Consider the matrix
A = 1 4
2 3
(a) Compute A-1
(b) Find det(A-1)
(c) Deduce a relation (if it exists) between det(A) and det(A-1)
Solution.
(a)
"det A=3-8=-5."
"A^{-1}=-\\frac{1}{5}\\begin{pmatrix}\n 3 & -2 \\\\\n -4 & 1\n\\end{pmatrix}^T=-\\frac{1}{5}\\begin{pmatrix}\n 3 & -4 \\\\\n -2& 1\n\\end{pmatrix}=\\begin{pmatrix}\n -0.6 & 0.8 \\\\\n 0.4 & -0.2\n\\end{pmatrix}."
(b)
"det (A^{-1})=0.12-0.32=-0.2=-\\frac{1}{5}."
"det(A^{-1})=\\frac{1}{det A}=-\\frac{1}{5}."
(c)
"det(A^{-1})=\\frac{1}{det A}."
Comments
Leave a comment