Consider the matrix
A = 1 4
2 3
(a) Compute A-1
(b) Find det(A-1)
(c) Deduce a relation (if it exists) between det(A) and det(A-1)
Solution.
(a)
detA=3−8=−5.det A=3-8=-5.detA=3−8=−5.
A−1=−15(3−2−41)T=−15(3−4−21)=(−0.60.80.4−0.2).A^{-1}=-\frac{1}{5}\begin{pmatrix} 3 & -2 \\ -4 & 1 \end{pmatrix}^T=-\frac{1}{5}\begin{pmatrix} 3 & -4 \\ -2& 1 \end{pmatrix}=\begin{pmatrix} -0.6 & 0.8 \\ 0.4 & -0.2 \end{pmatrix}.A−1=−51(3−4−21)T=−51(3−2−41)=(−0.60.40.8−0.2).
(b)
det(A−1)=0.12−0.32=−0.2=−15.det (A^{-1})=0.12-0.32=-0.2=-\frac{1}{5}.det(A−1)=0.12−0.32=−0.2=−51.
det(A−1)=1detA=−15.det(A^{-1})=\frac{1}{det A}=-\frac{1}{5}.det(A−1)=detA1=−51.
(c)
det(A−1)=1detA.det(A^{-1})=\frac{1}{det A}.det(A−1)=detA1.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments