Question #192272

Consider the matrix


A = 1 4

2 3


(a) Compute A-1

(b) Find det(A-1)

(c) Deduce a relation (if it exists) between det(A) and det(A-1)





1
Expert's answer
2021-05-13T13:32:42-0400

Solution.


A=(1423)A=\begin{pmatrix} 1 & 4\\ 2 & 3 \end{pmatrix}

(a)

detA=38=5.det A=3-8=-5.

A1=15(3241)T=15(3421)=(0.60.80.40.2).A^{-1}=-\frac{1}{5}\begin{pmatrix} 3 & -2 \\ -4 & 1 \end{pmatrix}^T=-\frac{1}{5}\begin{pmatrix} 3 & -4 \\ -2& 1 \end{pmatrix}=\begin{pmatrix} -0.6 & 0.8 \\ 0.4 & -0.2 \end{pmatrix}.

(b)

det(A1)=0.120.32=0.2=15.det (A^{-1})=0.12-0.32=-0.2=-\frac{1}{5}.

det(A1)=1detA=15.det(A^{-1})=\frac{1}{det A}=-\frac{1}{5}.

(c)

det(A1)=1detA.det(A^{-1})=\frac{1}{det A}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS