Show that if A is an n × n matrix, then AAT and A + A T are symmetric.
"Solution:\n\\\\ A ~is ~an~ n \u00d7 n~ matrix~i.e. ~square~ matrix. \n\\\\If~ A^T=A ~then ~matrix ~ A~ is ~ symmetric.\n\\\\Let~K=AA^T\n\\\\\\therefore K^T=(AA^T)^T\n\\\\~~~~~~~~~~~=(A^T)^TA^T~~~~~[Since~(AB)^T=B^TA^T]\n\\\\~~~~~~~~~~~=AA^T~~~~[Since ~(A^T)^T=A]\n\\\\~~~~K^T=K\n\\\\Hence ~ AA^T~is ~symmetric.\n\\\\Now ~let~us ~ consider ~C=A+A^T\n\\\\\\therefore C^T=(A+A^T)^T\n\\\\~~~~~~~~~~~=A^T+(A^T)^T\n\\\\~~~~~~~~~~~=A^T+A~~~~~~~[Since~(A^T)^T=A ]\n\\\\~~~~~~~~~~~=A+A^T ~~~~~~~[A+A^T=A^T+A~~~Commutative Property]\n\\\\~~~~C^T=C\n\\\\Hence~ A+A^T~ is~ symmetric.\n\\\\Hence~if ~A~ is ~an~ n \u00d7 n ~matrix, then ~AA^T ~and~ A + A^T ~are~ symmetric."
Comments
Excellent work
Leave a comment