U={(x,x,y,y)∈F4:x,y∈F }
=span {(1,1,0,0),(0,0,1,1) }
For W=span {(1,0,0,0),(0,0,0,1) }
={(x,0,0,y)∈F4:x,y∈F }
Let (a,b,c,d)∈U∩W
⇒(a,b,c,d)∈Uand(a,b,c,d)∈W
(a,b,c,d)∈U⇒a=b and c=d −(1)(a,b,c,d)∈W⇒b=0 and c=0 −(2)
from (1) and (2) we have a=b=c=d=0
U∩W=0 −(3)
Let (a,b,c,d)∈F4
(a,b,c,d)=(b,b,c,c)+(a−b,0,0,d−c)
Let (a,b,c,d)∈F4
(a,b,c,d)=(b,b,c,c)+(a−b,0,0,d−c)
⇒F4=U+W −(4)
From (3) and (4) we have-
F4=U⨁W
Comments