Question #190885

Suppose U={(x, x, y, y) ∈ F4 :x, y ∈ F}. Find a subspace W of F4=U ∅ W


1
Expert's answer
2021-05-11T09:19:14-0400

U={(x,x,y,y)F4:x,yF(x,x,y,y)\in F_4:x,y\in F }

 =span {(1,1,0,0),(0,0,1,1)(1,1,0,0),(0,0,1,1) }


For W=spanW=span {(1,0,0,0),(0,0,0,1)(1,0,0,0),(0,0,0,1) }

   

   ={(x,0,0,y)F4:x,yF(x,0,0,y)\in F_4:x,y\in F }


Let (a,b,c,d)UW(a,b,c,d)\in U\cap W


(a,b,c,d)Uand(a,b,c,d)W\Rightarrow (a,b,c,d)\in U and (a,b,c,d)\in W


(a,b,c,d)Ua=b and c=d        (1)(a,b,c,d)Wb=0 and c=0        (2)(a,b,c,d)\in U \Rightarrow a=b \text{ and } c=d~~~~~~~~-(1)\\ (a,b,c,d)\in W\Rightarrow b=0 \text{ and } c=0~~~~~~~~-(2)


from (1) and (2) we have a=b=c=d=0


UW=0       (3)U\cap W={0}~~~~~~~-(3)


Let (a,b,c,d)F4(a,b,c,d)\in F_4


(a,b,c,d)=(b,b,c,c)+(ab,0,0,dc)(a,b,c,d)=(b,b,c,c)+(a-b,0,0,d-c)


Let (a,b,c,d)F4(a,b,c,d)\in F_4


(a,b,c,d)=(b,b,c,c)+(ab,0,0,dc)(a,b,c,d)=(b,b,c,c)+(a-b,0,0,d-c)


F4=U+W          (4)\Rightarrow F_4=U+W~~~~~~~~~~-(4)


From (3) and (4) we have-


F4=UWF_4=U \bigoplus W


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS