Consider the given matrix
B = 2 2 0
1 0 1
0 1 1
Find detB and use it to determine whether or not B is invertible, and if so, find B-1 . (Hint: Use the matrix equation BX = I)
det(B)=
"\\begin{vmatrix}\n 2& 2 & 0\\\\\n 1 & 0 & 1 \\\\\n0 & 1 & 1\n\\end{vmatrix}" = -2 -2 = -4 "\\ne0" means inverse exists
BX = I
x = B-1I
x= "\\left[\\begin{array}{ccc|ccc}2 & 2 & 0 & 1 & 0 & 0\\\\1 & 0 & 1 & 0 & 1 & 0\\\\0 & 1 & 1 & 0 & 0 & 1\\end{array}\\right]"
Divide row 1 by 2 ": R_{1} = \\frac{R_{1}}{2}"
"\\left[\\begin{array}{ccc|ccc}1 & 1 & 0 & \\frac{1}{2} & 0 & 0\\\\1 & 0 & 1 & 0 & 1 & 0\\\\0 & 1 & 1 & 0 & 0 & 1\\end{array}\\right]"
Subtract row 1 from row 2 :"R_{2} = R_{2} - R_{1}"
"\\left[\\begin{array}{ccc|ccc}1 & 1 & 0 & \\frac{1}{2} & 0 & 0\\\\0 & -1 & 1 & - \\frac{1}{2} & 1 & 0\\\\0 & 1 & 1 & 0 & 0 & 1\\end{array}\\right]"
"R_{2} = - R_{2}"
"\\left[\\begin{array}{ccc|ccc}1 & 1 & 0 & \\frac{1}{2} & 0 & 0\\\\0 & 1 & -1 & \\frac{1}{2} & -1 & 0\\\\0 & 1 & 1 & 0 & 0 & 1\\end{array}\\right]"
"R_{1} = R_{1} - R_{2}"
"\\left[\\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0\\\\0 & 1 & -1 & \\frac{1}{2} & -1 & 0\\\\0 & 1 & 1 & 0 & 0 & 1\\end{array}\\right]"
"R_{3} = R_{3} - R_{2}"
"\\left[\\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0\\\\0 & 1 & -1 & \\frac{1}{2} & -1 & 0\\\\0 & 0 & 2 & - \\frac{1}{2} & 1 & 1\\end{array}\\right]"
"R_{3} = \\frac{R_{3}}{2}"
"\\left[\\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0\\\\0 & 1 & -1 & \\frac{1}{2} & -1 & 0\\\\0 & 0 & 1 & - \\frac{1}{4} & \\frac{1}{2} & \\frac{1}{2}\\end{array}\\right]"
"R_{1} = R_{1} - R_{3}"
"\\left[\\begin{array}{ccc|ccc}1 & 0 & 0 & \\frac{1}{4} & \\frac{1}{2} & - \\frac{1}{2}\\\\0 & 1 & -1 & \\frac{1}{2} & -1 & 0\\\\0 & 0 & 1 & - \\frac{1}{4} & \\frac{1}{2} & \\frac{1}{2}\\end{array}\\right]"
"R_{2} = R_{2} + R_{3}"
"\\left[\\begin{array}{ccc|ccc}1 & 0 & 0 & \\frac{1}{4} & \\frac{1}{2} & - \\frac{1}{2}\\\\0 & 1 & 0 & \\frac{1}{4} & - \\frac{1}{2} & \\frac{1}{2}\\\\0 & 0 & 1 & - \\frac{1}{4} & \\frac{1}{2} & \\frac{1}{2}\\end{array}\\right]"
"ANSWER" =
"\\left[\\begin{array}{ccc}\\frac{1}{4} & \\frac{1}{2} & - \\frac{1}{2}\\\\\\frac{1}{4} & - \\frac{1}{2} & \\frac{1}{2}\\\\- \\frac{1}{4} & \\frac{1}{2} & \\frac{1}{2}\\end{array}\\right] \\\\ = \\left[\\begin{array}{ccc}0.25 & 0.5 & -0.5\\\\0.25 & -0.5 & 0.5\\\\-0.25 & 0.5 & 0.5\\end{array}\\right]" = "B^{-1}"
Comments
Leave a comment