Answer to Question #192268 in Linear Algebra for prince

Question #192268

Consider the given matrix


B = 2 2 0

1 0 1

0 1 1


Find detB and use it to determine whether or not B is invertible, and if so, find B-1 . (Hint: Use the matrix equation BX = I)





1
Expert's answer
2021-05-12T16:02:32-0400

det(B)=


"\\begin{vmatrix}\n 2& 2 & 0\\\\\n 1 & 0 & 1 \\\\\n0 & 1 & 1\n\\end{vmatrix}" = -2 -2 = -4 "\\ne0" means inverse exists


 BX = I

x = B-1I


x= "\\left[\\begin{array}{ccc|ccc}2 & 2 & 0 & 1 & 0 & 0\\\\1 & 0 & 1 & 0 & 1 & 0\\\\0 & 1 & 1 & 0 & 0 & 1\\end{array}\\right]"

Divide row 1 by 2 ": R_{1} = \\frac{R_{1}}{2}"


"\\left[\\begin{array}{ccc|ccc}1 & 1 & 0 & \\frac{1}{2} & 0 & 0\\\\1 & 0 & 1 & 0 & 1 & 0\\\\0 & 1 & 1 & 0 & 0 & 1\\end{array}\\right]"


Subtract row 1 from row 2 :"R_{2} = R_{2} - R_{1}"


"\\left[\\begin{array}{ccc|ccc}1 & 1 & 0 & \\frac{1}{2} & 0 & 0\\\\0 & -1 & 1 & - \\frac{1}{2} & 1 & 0\\\\0 & 1 & 1 & 0 & 0 & 1\\end{array}\\right]"


"R_{2} = - R_{2}"


"\\left[\\begin{array}{ccc|ccc}1 & 1 & 0 & \\frac{1}{2} & 0 & 0\\\\0 & 1 & -1 & \\frac{1}{2} & -1 & 0\\\\0 & 1 & 1 & 0 & 0 & 1\\end{array}\\right]"


"R_{1} = R_{1} - R_{2}"

"\\left[\\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0\\\\0 & 1 & -1 & \\frac{1}{2} & -1 & 0\\\\0 & 1 & 1 & 0 & 0 & 1\\end{array}\\right]"


"R_{3} = R_{3} - R_{2}"

"\\left[\\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0\\\\0 & 1 & -1 & \\frac{1}{2} & -1 & 0\\\\0 & 0 & 2 & - \\frac{1}{2} & 1 & 1\\end{array}\\right]"



"R_{3} = \\frac{R_{3}}{2}"

"\\left[\\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0\\\\0 & 1 & -1 & \\frac{1}{2} & -1 & 0\\\\0 & 0 & 1 & - \\frac{1}{4} & \\frac{1}{2} & \\frac{1}{2}\\end{array}\\right]"


"R_{1} = R_{1} - R_{3}"

"\\left[\\begin{array}{ccc|ccc}1 & 0 & 0 & \\frac{1}{4} & \\frac{1}{2} & - \\frac{1}{2}\\\\0 & 1 & -1 & \\frac{1}{2} & -1 & 0\\\\0 & 0 & 1 & - \\frac{1}{4} & \\frac{1}{2} & \\frac{1}{2}\\end{array}\\right]"



"R_{2} = R_{2} + R_{3}"

"\\left[\\begin{array}{ccc|ccc}1 & 0 & 0 & \\frac{1}{4} & \\frac{1}{2} & - \\frac{1}{2}\\\\0 & 1 & 0 & \\frac{1}{4} & - \\frac{1}{2} & \\frac{1}{2}\\\\0 & 0 & 1 & - \\frac{1}{4} & \\frac{1}{2} & \\frac{1}{2}\\end{array}\\right]"



"ANSWER" =

"\\left[\\begin{array}{ccc}\\frac{1}{4} & \\frac{1}{2} & - \\frac{1}{2}\\\\\\frac{1}{4} & - \\frac{1}{2} & \\frac{1}{2}\\\\- \\frac{1}{4} & \\frac{1}{2} & \\frac{1}{2}\\end{array}\\right] \\\\ = \\left[\\begin{array}{ccc}0.25 & 0.5 & -0.5\\\\0.25 & -0.5 & 0.5\\\\-0.25 & 0.5 & 0.5\\end{array}\\right]" = "B^{-1}"





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS