det(B)=
∣ 2 2 0 1 0 1 0 1 1 ∣ \begin{vmatrix}
2& 2 & 0\\
1 & 0 & 1 \\
0 & 1 & 1
\end{vmatrix} ∣ ∣ 2 1 0 2 0 1 0 1 1 ∣ ∣ = -2 -2 = -4 ≠ 0 \ne0 = 0 means inverse exists
BX = I
x = B-1 I
x= [ 2 2 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 1 ] \left[\begin{array}{ccc|ccc}2 & 2 & 0 & 1 & 0 & 0\\1 & 0 & 1 & 0 & 1 & 0\\0 & 1 & 1 & 0 & 0 & 1\end{array}\right] ⎣ ⎡ 2 1 0 2 0 1 0 1 1 1 0 0 0 1 0 0 0 1 ⎦ ⎤
Divide row 1 by 2 : R 1 = R 1 2 : R_{1} = \frac{R_{1}}{2} : R 1 = 2 R 1
[ 1 1 0 1 2 0 0 1 0 1 0 1 0 0 1 1 0 0 1 ] \left[\begin{array}{ccc|ccc}1 & 1 & 0 & \frac{1}{2} & 0 & 0\\1 & 0 & 1 & 0 & 1 & 0\\0 & 1 & 1 & 0 & 0 & 1\end{array}\right] ⎣ ⎡ 1 1 0 1 0 1 0 1 1 2 1 0 0 0 1 0 0 0 1 ⎦ ⎤
Subtract row 1 from row 2 :R 2 = R 2 − R 1 R_{2} = R_{2} - R_{1} R 2 = R 2 − R 1
[ 1 1 0 1 2 0 0 0 − 1 1 − 1 2 1 0 0 1 1 0 0 1 ] \left[\begin{array}{ccc|ccc}1 & 1 & 0 & \frac{1}{2} & 0 & 0\\0 & -1 & 1 & - \frac{1}{2} & 1 & 0\\0 & 1 & 1 & 0 & 0 & 1\end{array}\right] ⎣ ⎡ 1 0 0 1 − 1 1 0 1 1 2 1 − 2 1 0 0 1 0 0 0 1 ⎦ ⎤
R 2 = − R 2 R_{2} = - R_{2} R 2 = − R 2
[ 1 1 0 1 2 0 0 0 1 − 1 1 2 − 1 0 0 1 1 0 0 1 ] \left[\begin{array}{ccc|ccc}1 & 1 & 0 & \frac{1}{2} & 0 & 0\\0 & 1 & -1 & \frac{1}{2} & -1 & 0\\0 & 1 & 1 & 0 & 0 & 1\end{array}\right] ⎣ ⎡ 1 0 0 1 1 1 0 − 1 1 2 1 2 1 0 0 − 1 0 0 0 1 ⎦ ⎤
R 1 = R 1 − R 2 R_{1} = R_{1} - R_{2} R 1 = R 1 − R 2
[ 1 0 1 0 1 0 0 1 − 1 1 2 − 1 0 0 1 1 0 0 1 ] \left[\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0\\0 & 1 & -1 & \frac{1}{2} & -1 & 0\\0 & 1 & 1 & 0 & 0 & 1\end{array}\right] ⎣ ⎡ 1 0 0 0 1 1 1 − 1 1 0 2 1 0 1 − 1 0 0 0 1 ⎦ ⎤
R 3 = R 3 − R 2 R_{3} = R_{3} - R_{2} R 3 = R 3 − R 2
[ 1 0 1 0 1 0 0 1 − 1 1 2 − 1 0 0 0 2 − 1 2 1 1 ] \left[\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0\\0 & 1 & -1 & \frac{1}{2} & -1 & 0\\0 & 0 & 2 & - \frac{1}{2} & 1 & 1\end{array}\right] ⎣ ⎡ 1 0 0 0 1 0 1 − 1 2 0 2 1 − 2 1 1 − 1 1 0 0 1 ⎦ ⎤
R 3 = R 3 2 R_{3} = \frac{R_{3}}{2} R 3 = 2 R 3
[ 1 0 1 0 1 0 0 1 − 1 1 2 − 1 0 0 0 1 − 1 4 1 2 1 2 ] \left[\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0\\0 & 1 & -1 & \frac{1}{2} & -1 & 0\\0 & 0 & 1 & - \frac{1}{4} & \frac{1}{2} & \frac{1}{2}\end{array}\right] ⎣ ⎡ 1 0 0 0 1 0 1 − 1 1 0 2 1 − 4 1 1 − 1 2 1 0 0 2 1 ⎦ ⎤
R 1 = R 1 − R 3 R_{1} = R_{1} - R_{3} R 1 = R 1 − R 3
[ 1 0 0 1 4 1 2 − 1 2 0 1 − 1 1 2 − 1 0 0 0 1 − 1 4 1 2 1 2 ] \left[\begin{array}{ccc|ccc}1 & 0 & 0 & \frac{1}{4} & \frac{1}{2} & - \frac{1}{2}\\0 & 1 & -1 & \frac{1}{2} & -1 & 0\\0 & 0 & 1 & - \frac{1}{4} & \frac{1}{2} & \frac{1}{2}\end{array}\right] ⎣ ⎡ 1 0 0 0 1 0 0 − 1 1 4 1 2 1 − 4 1 2 1 − 1 2 1 − 2 1 0 2 1 ⎦ ⎤
R 2 = R 2 + R 3 R_{2} = R_{2} + R_{3} R 2 = R 2 + R 3
[ 1 0 0 1 4 1 2 − 1 2 0 1 0 1 4 − 1 2 1 2 0 0 1 − 1 4 1 2 1 2 ] \left[\begin{array}{ccc|ccc}1 & 0 & 0 & \frac{1}{4} & \frac{1}{2} & - \frac{1}{2}\\0 & 1 & 0 & \frac{1}{4} & - \frac{1}{2} & \frac{1}{2}\\0 & 0 & 1 & - \frac{1}{4} & \frac{1}{2} & \frac{1}{2}\end{array}\right] ⎣ ⎡ 1 0 0 0 1 0 0 0 1 4 1 4 1 − 4 1 2 1 − 2 1 2 1 − 2 1 2 1 2 1 ⎦ ⎤
A N S W E R ANSWER A NS W ER =
[ 1 4 1 2 − 1 2 1 4 − 1 2 1 2 − 1 4 1 2 1 2 ] = [ 0.25 0.5 − 0.5 0.25 − 0.5 0.5 − 0.25 0.5 0.5 ] \left[\begin{array}{ccc}\frac{1}{4} & \frac{1}{2} & - \frac{1}{2}\\\frac{1}{4} & - \frac{1}{2} & \frac{1}{2}\\- \frac{1}{4} & \frac{1}{2} & \frac{1}{2}\end{array}\right] \\ = \left[\begin{array}{ccc}0.25 & 0.5 & -0.5\\0.25 & -0.5 & 0.5\\-0.25 & 0.5 & 0.5\end{array}\right] ⎣ ⎡ 4 1 4 1 − 4 1 2 1 − 2 1 2 1 − 2 1 2 1 2 1 ⎦ ⎤ = ⎣ ⎡ 0.25 0.25 − 0.25 0.5 − 0.5 0.5 − 0.5 0.5 0.5 ⎦ ⎤ = B − 1 B^{-1} B − 1
Comments