Question #192268

Consider the given matrix


B = 2 2 0

1 0 1

0 1 1


Find detB and use it to determine whether or not B is invertible, and if so, find B-1 . (Hint: Use the matrix equation BX = I)





1
Expert's answer
2021-05-12T16:02:32-0400

det(B)=


220101011\begin{vmatrix} 2& 2 & 0\\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} = -2 -2 = -4 0\ne0 means inverse exists


 BX = I

x = B-1I


x= [220100101010011001]\left[\begin{array}{ccc|ccc}2 & 2 & 0 & 1 & 0 & 0\\1 & 0 & 1 & 0 & 1 & 0\\0 & 1 & 1 & 0 & 0 & 1\end{array}\right]

Divide row 1 by 2 :R1=R12: R_{1} = \frac{R_{1}}{2}


[1101200101010011001]\left[\begin{array}{ccc|ccc}1 & 1 & 0 & \frac{1}{2} & 0 & 0\\1 & 0 & 1 & 0 & 1 & 0\\0 & 1 & 1 & 0 & 0 & 1\end{array}\right]


Subtract row 1 from row 2 :R2=R2R1R_{2} = R_{2} - R_{1}


[11012000111210011001]\left[\begin{array}{ccc|ccc}1 & 1 & 0 & \frac{1}{2} & 0 & 0\\0 & -1 & 1 & - \frac{1}{2} & 1 & 0\\0 & 1 & 1 & 0 & 0 & 1\end{array}\right]


R2=R2R_{2} = - R_{2}


[11012000111210011001]\left[\begin{array}{ccc|ccc}1 & 1 & 0 & \frac{1}{2} & 0 & 0\\0 & 1 & -1 & \frac{1}{2} & -1 & 0\\0 & 1 & 1 & 0 & 0 & 1\end{array}\right]


R1=R1R2R_{1} = R_{1} - R_{2}

[1010100111210011001]\left[\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0\\0 & 1 & -1 & \frac{1}{2} & -1 & 0\\0 & 1 & 1 & 0 & 0 & 1\end{array}\right]


R3=R3R2R_{3} = R_{3} - R_{2}

[10101001112100021211]\left[\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0\\0 & 1 & -1 & \frac{1}{2} & -1 & 0\\0 & 0 & 2 & - \frac{1}{2} & 1 & 1\end{array}\right]



R3=R32R_{3} = \frac{R_{3}}{2}

[1010100111210001141212]\left[\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0\\0 & 1 & -1 & \frac{1}{2} & -1 & 0\\0 & 0 & 1 & - \frac{1}{4} & \frac{1}{2} & \frac{1}{2}\end{array}\right]


R1=R1R3R_{1} = R_{1} - R_{3}

[1001412120111210001141212]\left[\begin{array}{ccc|ccc}1 & 0 & 0 & \frac{1}{4} & \frac{1}{2} & - \frac{1}{2}\\0 & 1 & -1 & \frac{1}{2} & -1 & 0\\0 & 0 & 1 & - \frac{1}{4} & \frac{1}{2} & \frac{1}{2}\end{array}\right]



R2=R2+R3R_{2} = R_{2} + R_{3}

[100141212010141212001141212]\left[\begin{array}{ccc|ccc}1 & 0 & 0 & \frac{1}{4} & \frac{1}{2} & - \frac{1}{2}\\0 & 1 & 0 & \frac{1}{4} & - \frac{1}{2} & \frac{1}{2}\\0 & 0 & 1 & - \frac{1}{4} & \frac{1}{2} & \frac{1}{2}\end{array}\right]



ANSWERANSWER =

[141212141212141212]=[0.250.50.50.250.50.50.250.50.5]\left[\begin{array}{ccc}\frac{1}{4} & \frac{1}{2} & - \frac{1}{2}\\\frac{1}{4} & - \frac{1}{2} & \frac{1}{2}\\- \frac{1}{4} & \frac{1}{2} & \frac{1}{2}\end{array}\right] \\ = \left[\begin{array}{ccc}0.25 & 0.5 & -0.5\\0.25 & -0.5 & 0.5\\-0.25 & 0.5 & 0.5\end{array}\right] = B1B^{-1}





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS