Question #192263

Show that if A is an n × n matrix, then AAT and A + AT are symmetric


1
Expert's answer
2021-05-13T03:13:48-0400

Solution:A is an n×n matrix i.e. square matrix.If AT=A then matrix A is symmetric.Let K=AATKT=(AAT)T           =(AT)TAT     [Since (AB)T=BTAT]           =AAT    [Since (AT)T=A]    KT=KHence AAT is symmetric.Now let us consider C=A+ATCT=(A+AT)T           =AT+(AT)T           =AT+A       [Since (AT)T=A]           =A+AT       [A+AT=AT+A   CommutativeProperty]    CT=CHence A+AT is symmetric.Hence if A is an n×n matrix,then AAT and A+AT are symmetric.Solution: \\ A ~is ~an~ n × n~ matrix~i.e. ~square~ matrix. \\If~ A^T=A ~then ~matrix ~ A~ is ~ symmetric. \\Let~K=AA^T \\\therefore K^T=(AA^T)^T \\~~~~~~~~~~~=(A^T)^TA^T~~~~~[Since~(AB)^T=B^TA^T] \\~~~~~~~~~~~=AA^T~~~~[Since ~(A^T)^T=A] \\~~~~K^T=K \\Hence ~ AA^T~is ~symmetric. \\Now ~let~us ~ consider ~C=A+A^T \\\therefore C^T=(A+A^T)^T \\~~~~~~~~~~~=A^T+(A^T)^T \\~~~~~~~~~~~=A^T+A~~~~~~~[Since~(A^T)^T=A ] \\~~~~~~~~~~~=A+A^T ~~~~~~~[A+A^T=A^T+A~~~Commutative Property] \\~~~~C^T=C \\Hence~ A+A^T~ is~ symmetric. \\Hence~if ~A~ is ~an~ n × n ~matrix,\\ then ~AA^T ~and~ A + A^T ~are~ symmetric.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS