Answer to Question #192263 in Linear Algebra for prince

Question #192263

Show that if A is an n × n matrix, then AAT and A + AT are symmetric


1
Expert's answer
2021-05-13T03:13:48-0400

"Solution:\n\\\\ A ~is ~an~ n \u00d7 n~ matrix~i.e. ~square~ matrix. \n\\\\If~ A^T=A ~then ~matrix ~ A~ is ~ symmetric.\n\\\\Let~K=AA^T\n\\\\\\therefore K^T=(AA^T)^T\n\\\\~~~~~~~~~~~=(A^T)^TA^T~~~~~[Since~(AB)^T=B^TA^T]\n\\\\~~~~~~~~~~~=AA^T~~~~[Since ~(A^T)^T=A]\n\\\\~~~~K^T=K\n\\\\Hence ~ AA^T~is ~symmetric.\n\\\\Now ~let~us ~ consider ~C=A+A^T\n\\\\\\therefore C^T=(A+A^T)^T\n\\\\~~~~~~~~~~~=A^T+(A^T)^T\n\\\\~~~~~~~~~~~=A^T+A~~~~~~~[Since~(A^T)^T=A ]\n\\\\~~~~~~~~~~~=A+A^T ~~~~~~~[A+A^T=A^T+A~~~Commutative Property]\n\\\\~~~~C^T=C\n\\\\Hence~ A+A^T~ is~ symmetric.\n\\\\Hence~if ~A~ is ~an~ n \u00d7 n ~matrix,\\\\ then ~AA^T ~and~ A + A^T ~are~ symmetric."


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS