A= [ 1 − 1 1 0 2 − 1 2 1 3 ] \begin{bmatrix}
1 & -1 & 1\\
0 & 2
& -1 \\
2 & 1 & 3\end{bmatrix} ⎣ ⎡ 1 0 2 − 1 2 1 1 − 1 3 ⎦ ⎤ , B= [ 8 − 3 − 5 0 1 2 4 − 7 6 ] \begin{bmatrix}
8 & -3 & -5\\
0 & 1
& 2 \\
4 & -7 & 6\end{bmatrix} ⎣ ⎡ 8 0 4 − 3 1 − 7 − 5 2 6 ⎦ ⎤
Now
A − 1 = A^{-1}= A − 1 = [ 7 5 4 5 − 1 5 − 2 5 1 5 1 5 − 4 5 − 3 5 2 5 ] = [ 1.4 0.8 − 0.2 − 0.4 0.2 0.2 − 0.8 − 0.6 0.4 ] \left[\begin{array}{ccc}\frac{7}{5} & \frac{4}{5} & - \frac{1}{5}\\- \frac{2}{5} & \frac{1}{5} & \frac{1}{5}\\- \frac{4}{5} & - \frac{3}{5} & \frac{2}{5}\end{array}\right] = \left[\begin{array}{ccc}1.4 & 0.8 & -0.2\\-0.4 & 0.2 & 0.2\\-0.8 & -0.6 & 0.4\end{array}\right] ⎣ ⎡ 5 7 − 5 2 − 5 4 5 4 5 1 − 5 3 − 5 1 5 1 5 2 ⎦ ⎤ = ⎣ ⎡ 1.4 − 0.4 − 0.8 0.8 0.2 − 0.6 − 0.2 0.2 0.4 ⎦ ⎤
B T = B^T= B T = [ 1 4 7 2 5 8 3 6 9 ] \left[\begin{array}{ccc}1 & 4 & 7\\2 & 5 & 8\\3 & 6 & 9\end{array}\right] ⎣ ⎡ 1 2 3 4 5 6 7 8 9 ⎦ ⎤ and ( B T ) − 1 = (B^T)^{-1}= ( B T ) − 1 = then the determinant of the matrix equals 0 ,Thus, the matrix is not invertible.
B − 1 = B^{-1}= B − 1 =
[ 5 39 53 156 − 1 156 2 39 17 39 − 4 39 − 1 39 11 39 2 39 ] ≈ [ 0.12 0.33 − 0.006 0.05 0.43 − 0.10 − 0.02 0.28 0.05 ] \left[\begin{array}{ccc}\frac{5}{39} & \frac{53}{156} & - \frac{1}{156}\\\frac{2}{39} & \frac{17}{39} & - \frac{4}{39}\\- \frac{1}{39} & \frac{11}{39} & \frac{2}{39}\end{array}\right] \\ \\\approx \left[\begin{array}{ccc}0.12& 0.33& -0.006\\0.05 & 0.43 & -0.10\\-0.02 & 0.28 & 0.05\end{array}\right] ⎣ ⎡ 39 5 39 2 − 39 1 156 53 39 17 39 11 − 156 1 − 39 4 39 2 ⎦ ⎤ ≈ ⎣ ⎡ 0.12 0.05 − 0.02 0.33 0.43 0.28 − 0.006 − 0.10 0.05 ⎦ ⎤
B − 1 × A − 1 = B^{-1}\times A^{-1}= B − 1 × A − 1 = [ 7 5 4 5 − 1 5 − 2 5 1 5 1 5 − 4 5 − 3 5 2 5 ] ⋅ [ 3 25 33 100 − 3 500 1 200 43 100 − 1 10 − 1 50 7 25 1 20 ] = [ 22 125 3 4 − 123 1250 − 51 1000 1 100 − 19 2500 − 107 1000 − 41 100 53 625 ] = [ 0.176 0.75 − 0.0984 − 0.051 0.01 − 0.0076 − 0.107 − 0.41 0.0848 ] \left[\begin{array}{ccc}\frac{7}{5} & \frac{4}{5} & - \frac{1}{5}\\- \frac{2}{5} & \frac{1}{5} & \frac{1}{5}\\- \frac{4}{5} & - \frac{3}{5} & \frac{2}{5}\end{array}\right]\cdot \left[\begin{array}{ccc}\frac{3}{25} & \frac{33}{100} & - \frac{3}{500}\\\frac{1}{200} & \frac{43}{100} & - \frac{1}{10}\\- \frac{1}{50} & \frac{7}{25} & \frac{1}{20}\end{array}\right] = \left[\begin{array}{ccc}\frac{22}{125} & \frac{3}{4} & - \frac{123}{1250}\\- \frac{51}{1000} & \frac{1}{100} & - \frac{19}{2500}\\- \frac{107}{1000} & - \frac{41}{100} & \frac{53}{625}\end{array}\right] = \left[\begin{array}{ccc}0.176 & 0.75 & -0.0984\\-0.051 & 0.01 & -0.0076\\-0.107 & -0.41 & 0.0848\end{array}\right] ⎣ ⎡ 5 7 − 5 2 − 5 4 5 4 5 1 − 5 3 − 5 1 5 1 5 2 ⎦ ⎤ ⋅ ⎣ ⎡ 25 3 200 1 − 50 1 100 33 100 43 25 7 − 500 3 − 10 1 20 1 ⎦ ⎤ = ⎣ ⎡ 125 22 − 1000 51 − 1000 107 4 3 100 1 − 100 41 − 1250 123 − 2500 19 625 53 ⎦ ⎤ = ⎣ ⎡ 0.176 − 0.051 − 0.107 0.75 0.01 − 0.41 − 0.0984 − 0.0076 0.0848 ⎦ ⎤
(7.1)
we got ( A − 1 ) − 1 = A (A^{-1})^{-1}= A ( A − 1 ) − 1 = A
(7.2)
we got
( ( B T ) − 1 ) T = B − 1 ((B^T)^{-1})^T=B^{-1} (( B T ) − 1 ) T = B − 1
(7.8)
we got
(AB) -1 = B-1 A-1
Comments