let
Matrix
A = 1 -1 1 B = 8 -3 -5
0 2 -1 0 1 2
2 1 3 4 -7 6
Compute A -1 , (BT )-1 and B-1A-1. What do you observe about
(7.1) (A -1 )-1 in relation to A.
(7.2) ((BT )-1 ) T in relation to B-1 .
(7.3) (AB) -1 in relation to B-1 A-1 .
A= "\\begin{bmatrix}\n 1 & -1 & 1\\\\\n 0 & 2\n& -1 \\\\ \n2 & 1 & 3\\end{bmatrix}" , B= "\\begin{bmatrix}\n 8 & -3 & -5\\\\\n 0 & 1\n& 2 \\\\ \n4 & -7 & 6\\end{bmatrix}"
Now
"A^{-1}=" "\\left[\\begin{array}{ccc}\\frac{7}{5} & \\frac{4}{5} & - \\frac{1}{5}\\\\- \\frac{2}{5} & \\frac{1}{5} & \\frac{1}{5}\\\\- \\frac{4}{5} & - \\frac{3}{5} & \\frac{2}{5}\\end{array}\\right] = \\left[\\begin{array}{ccc}1.4 & 0.8 & -0.2\\\\-0.4 & 0.2 & 0.2\\\\-0.8 & -0.6 & 0.4\\end{array}\\right]"
"B^T=" "\\left[\\begin{array}{ccc}1 & 4 & 7\\\\2 & 5 & 8\\\\3 & 6 & 9\\end{array}\\right]" and "(B^T)^{-1}=" then the determinant of the matrix equals 0 ,Thus, the matrix is not invertible.
"B^{-1}="
"\\left[\\begin{array}{ccc}\\frac{5}{39} & \\frac{53}{156} & - \\frac{1}{156}\\\\\\frac{2}{39} & \\frac{17}{39} & - \\frac{4}{39}\\\\- \\frac{1}{39} & \\frac{11}{39} & \\frac{2}{39}\\end{array}\\right] \\\\ \\\\\\approx \\left[\\begin{array}{ccc}0.12& 0.33& -0.006\\\\0.05 & 0.43 & -0.10\\\\-0.02 & 0.28 & 0.05\\end{array}\\right]"
"B^{-1}\\times A^{-1}=" "\\left[\\begin{array}{ccc}\\frac{7}{5} & \\frac{4}{5} & - \\frac{1}{5}\\\\- \\frac{2}{5} & \\frac{1}{5} & \\frac{1}{5}\\\\- \\frac{4}{5} & - \\frac{3}{5} & \\frac{2}{5}\\end{array}\\right]\\cdot \\left[\\begin{array}{ccc}\\frac{3}{25} & \\frac{33}{100} & - \\frac{3}{500}\\\\\\frac{1}{200} & \\frac{43}{100} & - \\frac{1}{10}\\\\- \\frac{1}{50} & \\frac{7}{25} & \\frac{1}{20}\\end{array}\\right] = \\left[\\begin{array}{ccc}\\frac{22}{125} & \\frac{3}{4} & - \\frac{123}{1250}\\\\- \\frac{51}{1000} & \\frac{1}{100} & - \\frac{19}{2500}\\\\- \\frac{107}{1000} & - \\frac{41}{100} & \\frac{53}{625}\\end{array}\\right] = \\left[\\begin{array}{ccc}0.176 & 0.75 & -0.0984\\\\-0.051 & 0.01 & -0.0076\\\\-0.107 & -0.41 & 0.0848\\end{array}\\right]"
(7.1)
we got "(A^{-1})^{-1}= A"
(7.2)
we got
"((B^T)^{-1})^T=B^{-1}"
(7.8)
we got
(AB) -1 = B-1 A-1
Comments
Leave a comment