Answer to Question #192278 in Linear Algebra for prince

Question #192278

Consider the matrices


A = 3 0 2 , B = -5 1 1 , C = 1 1 1

4 -6 3 0 3 0 2 3 -1

-2 1 8 7 6 2 3 -5 -7


Verify the following expressions (where possible and give reasons)

(i) A + (B + C) = (A + B) + C and A(BC) = (AB)C.

(ii) (a − b)C = aC + bC and a(B − C) = aB − aC, where a = −2, b = 3 .

(iii) (AT)T = A and (A − B)T = A T− BT



1
Expert's answer
2021-05-17T18:40:02-0400

(i)


"A+(B+C)=\\begin{pmatrix}\n 3 & 0 & 2 \\\\\n 4 & -6 & 3 \\\\\n -2 & 1 & 8\n\\end{pmatrix}"

"+\\bigg(\\begin{pmatrix}\n -5 & 1 & 1 \\\\\n 0 & 3 & 0 \\\\\n 7 & 6 & 2\n\\end{pmatrix}+\\begin{pmatrix}\n 1 & 1 & 1\\\\\n 2 & 3 & -1 \\\\\n 3 & -5 & -7\n\\end{pmatrix}\\bigg)"




"=\\begin{pmatrix}\n 3 & 0 & 2 \\\\\n 4 & -6 & 3 \\\\\n -2 & 1 & 8\n\\end{pmatrix}+\\begin{pmatrix}\n -4 & 2 & 2 \\\\\n 2 & 6 & -1 \\\\\n 10 & 1 & -5\n\\end{pmatrix}"

"=\\begin{pmatrix}\n -1 & 2 & 4 \\\\\n 6 & 0 & 2 \\\\\n 8 & 2 & 3\n\\end{pmatrix}"

"(A+B)+C=\\bigg(\\begin{pmatrix}\n 3 & 0 & 2 \\\\\n 4 & -6 & 3 \\\\\n -2 & 1 & 8\n\\end{pmatrix}"


"+\\begin{pmatrix}\n -5 & 1 & 1 \\\\\n 0 & 3 & 0 \\\\\n 7 & 6 & 2\n\\end{pmatrix}\\bigg)+\\begin{pmatrix}\n 1 & 1 & 1\\\\\n 2 & 3 & -1 \\\\\n 3 & -5 & -7\n\\end{pmatrix}"

"=\\begin{pmatrix}\n -2 & 1 & 3 \\\\\n 4 & -3 & 3 \\\\\n 5 & 7 & 10\n\\end{pmatrix}+\\begin{pmatrix}\n 1 & 1 & 1\\\\\n 2 & 3 & -1 \\\\\n 3 & -5 & -7\n\\end{pmatrix}"

"=\\begin{pmatrix}\n -1 & 2 & 4 \\\\\n 6 & 0 & 2 \\\\\n 8 & 2 & 3\n\\end{pmatrix}"

"A+(B+C)=\\begin{pmatrix}\n -1 & 2 & 4 \\\\\n 6 & 0 & 2 \\\\\n 8 & 2 & 3\n\\end{pmatrix}=(A+B)+C"


"BC=\\begin{pmatrix}\n -5 & 1 & 1 \\\\\n 0 & 3 & 0 \\\\\n 7 & 6 & 2\n\\end{pmatrix}\\begin{pmatrix}\n 1 & 1 & 1\\\\\n 2 & 3 & -1 \\\\\n 3 & -5 & -7\n\\end{pmatrix}"


"=\\begin{pmatrix}\n 0 & -7 & -13 \\\\\n 6 & 9 & -3 \\\\\n 25 & 15 & -13\n\\end{pmatrix}"

"A\\big(BC\\big)=\\begin{pmatrix}\n 3 & 0 & 2 \\\\\n 4 & -6 & 3 \\\\\n -2 & 1 & 8\n\\end{pmatrix}\\begin{pmatrix}\n 0 & -7 & -13 \\\\\n 6 & 9 & -3 \\\\\n 25 & 15 & -13\n\\end{pmatrix}"

"=\\begin{pmatrix}\n 50 & 9 & -65 \\\\\n 39 & -37 & -73 \\\\\n 206 & 143 &-81\n\\end{pmatrix}"

"AB=\\begin{pmatrix}\n 3 & 0 & 2 \\\\\n 4 & -6 & 3 \\\\\n -2 & 1 & 8\n\\end{pmatrix}\\begin{pmatrix}\n -5 & 1 & 1 \\\\\n 0 & 3 & 0 \\\\\n 7 & 6& 2\n\\end{pmatrix}"

"=\\begin{pmatrix}\n -1 & 15 & 7 \\\\\n 1 & 4 &10 \\\\\n 66 & 49 & 14\n\\end{pmatrix}"

"\\big(AB\\big)C=\\begin{pmatrix}\n -1 & 15& 7 \\\\\n 1 & 4 & 10 \\\\\n 66 & 49 & 14\n\\end{pmatrix}\\begin{pmatrix}\n 1 & 1 & 1\\\\\n 2 & 3 & -1 \\\\\n 3 & -5 & -7\n\\end{pmatrix}"

"=\\begin{pmatrix}\n 50 & 9 & -65\\\\\n 39 & -37 & -73 \\\\\n 206 & 143 & -81\n\\end{pmatrix}"

"A\\big(BC\\big)=\\begin{pmatrix}\n 50 & 9 & -65\\\\\n 39 & -37 & -73 \\\\\n 206 & 143 & -81\n\\end{pmatrix}=A\\big(BC\\big)"

(ii)


"a=-2, b=3"

"(a-b)C=(-2-3)\\begin{pmatrix}\n 1 & 1 & 1\\\\\n 2 & 3 & -1 \\\\\n 3 & -5 & -7\n\\end{pmatrix}"

"=-5\\begin{pmatrix}\n 1 & 1 & 1\\\\\n 2 & 3 & -1 \\\\\n 3 & -5 & -7\n\\end{pmatrix}=\\begin{pmatrix}\n -5 & -5 & -5\\\\\n -10 & -15 & 5 \\\\\n -15 & 25 & 35\\end{pmatrix}"

"aC=-2\\begin{pmatrix}\n 1 & 1 & 1\\\\\n 2 & 3 & -1 \\\\\n 3 & -5 & -7\n\\end{pmatrix}=\\begin{pmatrix}\n -2 & -2 & -2\\\\\n -4 & -6 & 2 \\\\\n -6 & 10 & 14\n\\end{pmatrix}"

"bC=3\\begin{pmatrix}\n 1 & 1 & 1\\\\\n 2 & 3 & -1 \\\\\n 3 & -5 & -7\n\\end{pmatrix}=\\begin{pmatrix}\n 3 & 3 & 3\\\\\n 6 & 9 & -3 \\\\\n 9 & -15 & -21\n\\end{pmatrix}"

"aC-bC=\\begin{pmatrix}\n -2 & -2 & -2\\\\\n -4 & -6 & 2 \\\\\n -6 & 10 & 14\n\\end{pmatrix}-\\begin{pmatrix}\n 3 & 3 & 3\\\\\n 6 & 9 & -3 \\\\\n 9 & -15 & -21\n\\end{pmatrix}"

"=\\begin{pmatrix}\n -5 & -5 & -5\\\\\n -10 & -15 & 5 \\\\\n -15 & 25 & 35\\end{pmatrix}"

"(a-b)C=\\begin{pmatrix}\n -5 & -5 & -5\\\\\n -10 & -15 & 5 \\\\\n -15 & 25 & 35\\end{pmatrix}=aC-bC"


"B-C=\\begin{pmatrix}\n -5 & 1 & 1 \\\\\n 0 & 3 & 0 \\\\\n 7 & 6 & 2\n\\end{pmatrix}-\\begin{pmatrix}\n 1 & 1 & 1\\\\\n 2 & 3 & -1 \\\\\n 3 & -5 & -7\n\\end{pmatrix}"

"=\\begin{pmatrix}\n -6 & 0 & 0\\\\\n -2 & 0 & 1 \\\\\n 4 & 11& 9\n\\end{pmatrix}"

"a(B-C)=-2\\begin{pmatrix}\n -6 & 0 & 0\\\\\n -2 & 0 & 1 \\\\\n 4 & 11& 9\n\\end{pmatrix}=\\begin{pmatrix}\n 12 & 0 & 0\\\\\n 4 & 0 & -2 \\\\\n -8 & -22 & -18\n\\end{pmatrix}"

"aB=-2\\begin{pmatrix}\n -5 & 1 & 1 \\\\\n 0 & 3 & 0 \\\\\n 7 & 6 & 2\n\\end{pmatrix}=\\begin{pmatrix}\n 10 & -2 & -2 \\\\\n 0 & -6 & 0 \\\\\n -14 & -12 &-4\n\\end{pmatrix}"

"aB-aC=\\begin{pmatrix}\n 10 & -2 & -2 \\\\\n 0 & -6 & 0 \\\\\n -14 & -12 &-4\n\\end{pmatrix}"

"-\\begin{pmatrix}\n -2 & -2 & -2\\\\\n -4 & -6 & 2 \\\\\n -6 & 10 & 14\n\\end{pmatrix}=\\begin{pmatrix}\n 12 & 0 & 0\\\\\n 4 & 0 & -2 \\\\\n -8 & -22& -18\n\\end{pmatrix}"

"a(B-C)=\\begin{pmatrix}\n 12 & 0 & 0\\\\\n 4 & 0 & -2 \\\\\n -8 & -22& -18\n\\end{pmatrix}=aB-aC"

(iii)


"A^T=\\begin{pmatrix}\n 3 & 0 & 2 \\\\\n 4 & -6 & 3 \\\\\n -2 & 1 & 8\n\\end{pmatrix}^T=\\begin{pmatrix}\n 3 & 4 & -2 \\\\\n 0 & -6 & 1 \\\\\n 2 & 3 & 8\n\\end{pmatrix}"

"(A^T)^T=\\begin{pmatrix}\n 3 & 4 & -2 \\\\\n 0 & -6 & 1 \\\\\n 2 & 3 & 8\n\\end{pmatrix}^T=\\begin{pmatrix}\n 3 & 0 & 2 \\\\\n 4 & -6 & 3 \\\\\n -2 & 1 & 8\n\\end{pmatrix}=A"

"(A^T)^T=\\begin{pmatrix}\n 3 & 0 & 2 \\\\\n 4 & -6 & 3 \\\\\n -2 & 1 & 8\n\\end{pmatrix}=A"


"A-B=\\begin{pmatrix}\n 3 & 0 & 2 \\\\\n 4 & -6 & 3 \\\\\n -2 & 1 & 8\n\\end{pmatrix}-\\begin{pmatrix}\n -5 & 1 & 1 \\\\\n 0 & 3 & 0 \\\\\n 7 & 6 & 2\n\\end{pmatrix}"

"=\\begin{pmatrix}\n 8 & -1 & 1 \\\\\n 4 & -9 & 3 \\\\\n -9 & -5 & 6\n\\end{pmatrix}"

"(A-B)^T=\\begin{pmatrix}\n 8 & -1 & 1 \\\\\n 4 & -9 & 3 \\\\\n -9 & -5 & 6\n\\end{pmatrix}^T=\\begin{pmatrix}\n 8 & 4 & -9 \\\\\n -1 & -9 & -5 \\\\\n 1 & 3 & 6\n\\end{pmatrix}"

"B^T=\\begin{pmatrix}\n -5 & 1 & 1 \\\\\n 0 & 3 & 0 \\\\\n 7 & 6 & 2\n\\end{pmatrix}^T=\\begin{pmatrix}\n -5 & 0 & 7 \\\\\n 1 & 3 & 6 \\\\\n 1 & 0& 2\n\\end{pmatrix}"

"A^T-B^T=\\begin{pmatrix}\n 3 & 4 & -2 \\\\\n 0 & -6 & 1 \\\\\n 2 & 3 & 8\n\\end{pmatrix}-\\begin{pmatrix}\n -5 & 0 & 7 \\\\\n 1 & 3 & 6 \\\\\n 1 & 0& 2\n\\end{pmatrix}"

"=\\begin{pmatrix}\n 8 & 4 & -9 \\\\\n -1 & -9 & -5 \\\\\n 1 & 3 &6\n\\end{pmatrix}"

"(A-B)^T=\\begin{pmatrix}\n 8 & 4 & -9 \\\\\n -1 & -9 & -5 \\\\\n 1 & 3 & 6\n\\end{pmatrix}=A^T-B^T"




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS