find all the values of of λ∈c such that λ(1+2i, 5+4i) =(3 +2i, 6 - i)
Given, λ(1+2i,5+4i)=(3+2i,6−i)λ(1+2i, 5+4i) =(3 +2i, 6 - i)λ(1+2i,5+4i)=(3+2i,6−i)
λ(1+2i)=3+2i\lambda(1+2i)=3+2iλ(1+2i)=3+2i
λ=3+2i1+2i=(3+2i)(1−2i)(1+2i)(1−2i)=3−6i+2i−4i21−4i2=7−4i5\lambda=\dfrac{3+2i}{1+2i}=\dfrac{(3+2i)(1-2i)}{(1+2i)(1-2i)}=\dfrac{3-6i+2i-4i^2}{1-4i^2}=\dfrac{7-4i}{5}λ=1+2i3+2i=(1+2i)(1−2i)(3+2i)(1−2i)=1−4i23−6i+2i−4i2=57−4i
Now,
λ(5+4i)=6−i\lambda(5+4i)=6-iλ(5+4i)=6−i
λ=6−i5+4i=(6−i)(5−4i)(5+4i)(5−4i)=30−24i+20i+4i225−16i2=26−4i41\lambda=\dfrac{6-i}{5+4i}=\dfrac{(6-i)(5-4i)}{(5+4i)(5-4i)}=\dfrac{30-24i+20i+4i^2}{25-16i^2}=\dfrac{26-4i}{41}λ=5+4i6−i=(5+4i)(5−4i)(6−i)(5−4i)=25−16i230−24i+20i+4i2=4126−4i
The values of λ are 7−4i5 and 26−4i41, where λ∈C\lambda \text{ are }\dfrac{7-4i}{5} \text{ and }\dfrac{26-4i}{41},\text{ where }\lambda\in Cλ are 57−4i and 4126−4i, where λ∈C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments