Question #190703

find all the values of of λ∈c such that λ(1+2i, 5+4i) =(3 +2i, 6 - i)


1
Expert's answer
2021-05-11T07:05:28-0400

Given, λ(1+2i,5+4i)=(3+2i,6i)λ(1+2i, 5+4i) =(3 +2i, 6 - i)


λ(1+2i)=3+2i\lambda(1+2i)=3+2i


λ=3+2i1+2i=(3+2i)(12i)(1+2i)(12i)=36i+2i4i214i2=74i5\lambda=\dfrac{3+2i}{1+2i}=\dfrac{(3+2i)(1-2i)}{(1+2i)(1-2i)}=\dfrac{3-6i+2i-4i^2}{1-4i^2}=\dfrac{7-4i}{5}


Now,

λ(5+4i)=6i\lambda(5+4i)=6-i


λ=6i5+4i=(6i)(54i)(5+4i)(54i)=3024i+20i+4i22516i2=264i41\lambda=\dfrac{6-i}{5+4i}=\dfrac{(6-i)(5-4i)}{(5+4i)(5-4i)}=\dfrac{30-24i+20i+4i^2}{25-16i^2}=\dfrac{26-4i}{41}



The values of λ are 74i5 and 264i41, where λC\lambda \text{ are }\dfrac{7-4i}{5} \text{ and }\dfrac{26-4i}{41},\text{ where }\lambda\in C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS