6.1.
C=[λλλ+1λ−1]
Det(C)=∣∣λλλ+1λ−1∣∣
=λ(λ−1)−λ(λ+1)=−2λ
6.2
The given determinant is ∣∣232101−5302000043∣∣
Use the cofactor expansion corresponding to the first row.
=2∣∣1−53200043∣∣−0+0−0
=2∣∣1−53200043∣∣=2[1(0−0)−2(−15−12)+0]=2[54]=108
6.3
(a)The given matrix is- A=[1243]
detA=∣∣1243∣∣=3−8=−5
detA=−5=0.
⇒A−1 exist.
Now, adj.(A)=[32−23]T⇒adj(A)=[3−2−41]
So, A−1=det(A)adjA=−51[3−2−41]=⎣⎡5−352545−1⎦⎤
(b)
det(A−1)=∣∣5−352545−1∣∣
=253−258=253−8=25−5=5−1
(c) We have, det(A)=−5 and det(A−1)=5−1
det(A).det(A−1)=(−5).(−51)=1
Hence det(A).det(A−1)=1
This is the required relation.
Comments
Dear prince, the answer to question 6.2 is correct.
question 6.2 the answer is -108 2(1)((54)(-1)) = 2(54(-1)) = -108