6.1.
C = [ λ λ + 1 λ λ − 1 ] C=\begin{bmatrix}
\lambda& \lambda+1\\
\lambda& \lambda-1
\end{bmatrix} C = [ λ λ λ + 1 λ − 1 ]
D e t ( C ) = ∣ λ λ + 1 λ λ − 1 ∣ Det(C)=\begin{vmatrix}
\lambda& \lambda+1\\
\lambda& \lambda-1
\end{vmatrix} De t ( C ) = ∣ ∣ λ λ λ + 1 λ − 1 ∣ ∣
= λ ( λ − 1 ) − λ ( λ + 1 ) = − 2 λ =\lambda(\lambda-1)-\lambda(\lambda+1)
=-2\lambda = λ ( λ − 1 ) − λ ( λ + 1 ) = − 2 λ
6.2
The given determinant is ∣ 2 0 0 0 3 1 2 0 2 − 5 0 4 1 3 0 3 ∣ \begin{vmatrix}
2&0&0&0\\
3&1&2&0\\
2&-5&0&4\\
1&3&0&3
\end{vmatrix} ∣ ∣ 2 3 2 1 0 1 − 5 3 0 2 0 0 0 0 4 3 ∣ ∣
Use the cofactor expansion corresponding to the first row.
= 2 ∣ 1 2 0 − 5 0 4 3 0 3 ∣ − 0 + 0 − 0 =2 \begin{vmatrix}
1&2&0\\
-5&0&4\\
3&0&3
\end{vmatrix} -0+0-0 = 2 ∣ ∣ 1 − 5 3 2 0 0 0 4 3 ∣ ∣ − 0 + 0 − 0
= 2 ∣ 1 2 0 − 5 0 4 3 0 3 ∣ = 2 [ 1 ( 0 − 0 ) − 2 ( − 15 − 12 ) + 0 ] = 2 [ 54 ] = 108 =2 \begin{vmatrix}
1&2&0\\
-5&0&4\\
3&0&3
\end{vmatrix}
=2[1(0-0)-2(-15-12)+0]
=2[54]=108 = 2 ∣ ∣ 1 − 5 3 2 0 0 0 4 3 ∣ ∣ = 2 [ 1 ( 0 − 0 ) − 2 ( − 15 − 12 ) + 0 ] = 2 [ 54 ] = 108
6.3
( a ) The given matrix is- A = [ 1 4 2 3 ] (a) \text{The given matrix is-
}
A=\begin{bmatrix}
1&4\\
2&3\end{bmatrix} ( a ) The given matrix is- A = [ 1 2 4 3 ]
d e t A = ∣ 1 4 2 3 ∣ = 3 − 8 = − 5 det A=\begin{vmatrix}
1&4\\
2&3\end{vmatrix}=3-8=-5 d e t A = ∣ ∣ 1 2 4 3 ∣ ∣ = 3 − 8 = − 5
d e t A = − 5 ≠ 0. det A=-5 \neq 0. d e t A = − 5 = 0.
⇒ A − 1 \Rightarrow A^{-1} ⇒ A − 1 exist.
Now, a d j . ( A ) = [ 3 − 2 2 3 ] T ⇒ a d j ( A ) = [ 3 − 4 − 2 1 ] adj.(A)=\begin{bmatrix}
3&-2\\
2&3\end{bmatrix}^T
\Rightarrow adj(A)=\begin{bmatrix}
3&-4\\
-2&1\end{bmatrix} a d j . ( A ) = [ 3 2 − 2 3 ] T ⇒ a d j ( A ) = [ 3 − 2 − 4 1 ]
So, A − 1 = a d j A d e t ( A ) = 1 − 5 [ 3 − 4 − 2 1 ] = [ − 3 5 4 5 2 5 − 1 5 ] A^{-1} =\dfrac{adj A}{det (A)}=\dfrac{1}{-5}\begin{bmatrix}
3&-4\\
-2&1\end{bmatrix}=\begin{bmatrix}
\dfrac{-3}{5} & \dfrac{4}{5}\\\\
\dfrac{2}{5} & \dfrac{-1}{5}\end{bmatrix} A − 1 = d e t ( A ) a d j A = − 5 1 [ 3 − 2 − 4 1 ] = ⎣ ⎡ 5 − 3 5 2 5 4 5 − 1 ⎦ ⎤
(b)
d e t ( A − 1 ) = ∣ − 3 5 4 5 2 5 − 1 5 ∣ det(A^{-1})=\begin{vmatrix}
\dfrac{-3}{5} & \dfrac{4}{5}\\\\
\dfrac{2}{5} & \dfrac{-1}{5}\end{vmatrix} d e t ( A − 1 ) = ∣ ∣ 5 − 3 5 2 5 4 5 − 1 ∣ ∣
= 3 25 − 8 25 = 3 − 8 25 = − 5 25 = − 1 5 =\dfrac{3}{25}-\dfrac{8}{25}=\dfrac{3-8}{25}=\dfrac{-5}{25}=\dfrac{-1}{5} = 25 3 − 25 8 = 25 3 − 8 = 25 − 5 = 5 − 1
(c) We have, d e t ( A ) = − 5 and d e t ( A − 1 ) = − 1 5 det(A)=-5 \text{ and }det(A^{-1})=\dfrac{-1}{5} d e t ( A ) = − 5 and d e t ( A − 1 ) = 5 − 1
d e t ( A ) . d e t ( A − 1 ) = ( − 5 ) . ( − 1 5 ) = 1 det(A).det(A^{-1})=(-5).(-\dfrac{1}{5})=1 d e t ( A ) . d e t ( A − 1 ) = ( − 5 ) . ( − 5 1 ) = 1
Hence d e t ( A ) . d e t ( A − 1 ) = 1 det(A).det(A^{-1})=1 d e t ( A ) . d e t ( A − 1 ) = 1
This is the required relation.
Comments
Dear prince, the answer to question 6.2 is correct.
question 6.2 the answer is -108 2(1)((54)(-1)) = 2(54(-1)) = -108