Question #190367

(6.1) Find det(C) if (1) C =  λ λ + 1 λ λ − 1  (6.2) Use the cofactor expansion to determine 2 0 0 0 3 1 2 0 2 −5 0 4 1 3 0 3 (6.3) Consider the matrix A =  1 4 2 3  (a) Compute A −1 (b) Find det(A **−1 ) (c) Deduce a relation (if it exists) between det(A) and det(A **−1 


1
Expert's answer
2021-05-11T08:32:03-0400

6.1. 


C=[λλ+1λλ1]C=\begin{bmatrix} \lambda& \lambda+1\\ \lambda& \lambda-1 \end{bmatrix}


Det(C)=λλ+1λλ1Det(C)=\begin{vmatrix} \lambda& \lambda+1\\ \lambda& \lambda-1 \end{vmatrix}


    =λ(λ1)λ(λ+1)=2λ=\lambda(\lambda-1)-\lambda(\lambda+1) =-2\lambda

6.2

        

The given determinant is 2000312025041303\begin{vmatrix} 2&0&0&0\\ 3&1&2&0\\ 2&-5&0&4\\ 1&3&0&3 \end{vmatrix}


Use the cofactor expansion corresponding to the first row.


=21205043030+00=2 \begin{vmatrix} 1&2&0\\ -5&0&4\\ 3&0&3 \end{vmatrix} -0+0-0


=2120504303=2[1(00)2(1512)+0]=2[54]=108=2 \begin{vmatrix} 1&2&0\\ -5&0&4\\ 3&0&3 \end{vmatrix} =2[1(0-0)-2(-15-12)+0] =2[54]=108


6.3

(a)The given matrix is- A=[1423](a) \text{The given matrix is- } A=\begin{bmatrix} 1&4\\ 2&3\end{bmatrix}


detA=1423=38=5det A=\begin{vmatrix} 1&4\\ 2&3\end{vmatrix}=3-8=-5


detA=50.det A=-5 \neq 0.


A1\Rightarrow A^{-1} exist.


Now, adj.(A)=[3223]Tadj(A)=[3421]adj.(A)=\begin{bmatrix} 3&-2\\ 2&3\end{bmatrix}^T \Rightarrow adj(A)=\begin{bmatrix} 3&-4\\ -2&1\end{bmatrix}



So, A1=adjAdet(A)=15[3421]=[35452515]A^{-1} =\dfrac{adj A}{det (A)}=\dfrac{1}{-5}\begin{bmatrix} 3&-4\\ -2&1\end{bmatrix}=\begin{bmatrix} \dfrac{-3}{5} & \dfrac{4}{5}\\\\ \dfrac{2}{5} & \dfrac{-1}{5}\end{bmatrix}

(b) 


det(A1)=35452515det(A^{-1})=\begin{vmatrix} \dfrac{-3}{5} & \dfrac{4}{5}\\\\ \dfrac{2}{5} & \dfrac{-1}{5}\end{vmatrix}


    =325825=3825=525=15=\dfrac{3}{25}-\dfrac{8}{25}=\dfrac{3-8}{25}=\dfrac{-5}{25}=\dfrac{-1}{5}



(c) We have, det(A)=5 and det(A1)=15det(A)=-5 \text{ and }det(A^{-1})=\dfrac{-1}{5}


  det(A).det(A1)=(5).(15)=1det(A).det(A^{-1})=(-5).(-\dfrac{1}{5})=1


  Hence det(A).det(A1)=1det(A).det(A^{-1})=1


This is the required relation.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
14.05.21, 12:26

Dear prince, the answer to question 6.2 is correct.

prince
13.05.21, 17:32

question 6.2 the answer is -108 2(1)((54)(-1)) = 2(54(-1)) = -108

LATEST TUTORIALS
APPROVED BY CLIENTS