Show that if A is an n × n matrix, then AAT
and A + A
T
are symmetric.
Let A be an n×nn\times nn×n matrix.
1. Let B=AATB=AA^TB=AAT
Take transpose on both sides-
BT=(AAT)TBT=(At)T.ATBT=AATB^T=(AA^T)^T\\ B^T=(A^t)^T.A^T\\ B^T=AA^TBT=(AAT)TBT=(At)T.ATBT=AAT
As, BT=B=AATB^T=B=AA^TBT=B=AAT
So AATAA^TAAT is symmetric.
2.Let C=A+ATC=A+A^TC=A+AT
CT=(A+AT)TCT=AT+(AT)TCT=A+ATC^T=(A+A^T)^T\\ C^T=A^T+(A^T)^T\\ C^T=A+A^TCT=(A+AT)TCT=AT+(AT)TCT=A+AT
hence C=CT=A+ATC=C^T=A+A^TC=CT=A+AT
So A+ATA+A^TA+AT is symmetric.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment