Question #190364

Consider the matrices A =   3 0 2 4 −6 3 −2 1 8   ,B =   −5 1 1 0 3 0 7 6 2   , C =   1 1 1 2 3 −1 3 −5 −7   , Verify the following expressions (where possible and give reasons) (i) A + (B + C) = (A + B) + C and A(BC) = (AB)C. (ii) (a − b)C = aC − bC and a(B − C) = aB − aC, where a = −2, b = 3 . (iii) (A T ) T = A and (A − B) T = A T − B T .


1
Expert's answer
2021-05-10T13:11:10-0400

Given matrices-


A=[302463218],B=[511030762],C=[111231357]A=\begin{bmatrix} 3 & 0&2 \\ 4 & -6&3\\-2&1&8 \end{bmatrix},B=\begin{bmatrix} -5 & 1&1 \\ 0 & 3&0\\7&6&2 \end{bmatrix},C=\begin{bmatrix} 1 & 1&1 \\ 2 & 3&-1\\3&-5&-7 \end{bmatrix}


(i)LHSA+(B+C)(i) LHS- A+(B+C)


=[302463218]+([511030762]+[111231357])=[302463218]+[4222611015]=[124602823]=\begin{bmatrix} 3 & 0&2 \\ 4 & -6&3\\-2&1&8 \end{bmatrix}+(\begin{bmatrix} -5 & 1&1 \\ 0 & 3&0\\7&6&2 \end{bmatrix}+\begin{bmatrix} 1 & 1&1 \\ 2 & 3&-1\\3&-5&-7 \end{bmatrix})\\[9pt]=\begin{bmatrix} 3 & 0&2 \\ 4 & -6&3\\-2&1&8 \end{bmatrix}+\begin{bmatrix} -4& 2&2 \\ 2 & 6&-1\\10&1&-5 \end{bmatrix}=\begin{bmatrix} -1 & 2&4 \\ 6 & 0&2\\8&2&3 \end{bmatrix}


RHS-(A+B)+C

=([302463218]+[511030762])+[111231357]=[2224335710]+[111231357]=[124602823]=(\begin{bmatrix} 3 & 0&2 \\ 4 & -6&3\\-2&1&8 \end{bmatrix}+\begin{bmatrix} -5 & 1&1 \\ 0 & 3&0\\7&6&2 \end{bmatrix})+\begin{bmatrix} 1 & 1&1 \\ 2 & 3&-1\\3&-5&-7 \end{bmatrix}\\[9pt]=\begin{bmatrix} -2 & 2&2 \\ 4 & -3&3\\5&7&10 \end{bmatrix}+\begin{bmatrix} 1 & 1&1 \\ 2 & 3&-1\\3&-5&-7 \end{bmatrix}=\begin{bmatrix} -1 & 2&4 \\ 6 & 0&2\\8&2&3 \end{bmatrix}


Hence LHS=RHS.


(ii)Lhs=(ab)C=(23)C=5C=5[111231357](ii) Lhs= (a-b)C=(-2-3)C=-5C=-5\begin{bmatrix} 1 & 1&1 \\ 2 & 3&-1\\3&-5&-7 \end{bmatrix} =[55510155152549]\begin{bmatrix} -5 & -5&-5 \\ -10 & -15&5\\-15&25&49 \end{bmatrix}


RHS=aCbC=2C3C=2[111231357]3[111231357]=[22246261014][33369391521]=[55510155152549]RHS=aC-bC=-2C-3C=-2\begin{bmatrix} 1 & 1&1 \\ 2 & 3&-1\\3&-5&-7 \end{bmatrix}-3\begin{bmatrix} 1 & 1&1 \\ 2 & 3&-1\\3&-5&-7 \end{bmatrix}\\[9pt]=\begin{bmatrix} -2 & -2&-2 \\ -4 & -6&2\\-6&10&14 \end{bmatrix}-\begin{bmatrix} 3 & 3&3 \\ 6 & 9&-3\\9&-15&-21 \end{bmatrix}\\[9pt]=\begin{bmatrix} -5 & -5&-5 \\ -10 & -15&5\\-15&25&49 \end{bmatrix}


Hence, RHS=LHS


(iii)(AT)T=[302463218]=[342061238]=[302463218]=A(iii) (A^T)^T=\begin{bmatrix} 3 & 0&2 \\ 4 & -6&3\\-2&1&8 \end{bmatrix}''=\begin{bmatrix} 3 & 4&-2 \\ 0& -6&1\\2&3&8 \end{bmatrix}'=\begin{bmatrix} 3 & 0&2 \\ 4 & -6&3\\-2&1&8 \end{bmatrix}=A


Hence, (AT)T=A(A^T)^T=A


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS