Solve for x, y, z, and t in the matrix equation below. 3x y − x t + 1 2 z t − z = 3 1 7 2 3 .
To solve for x, y , z, t
"\\begin{bmatrix}\n 3x & y-x \\\\\n t+\\frac{1}{2}z & t-z\n\\end{bmatrix}=\\begin{bmatrix}\n 3 & 1 \\\\\n \\frac{7}{2} & 3\n\\end{bmatrix}"
On comparing:
"\\Rightarrow 3x=3\\\\\\Rightarrow\\boxed{x=1}"
"\\Rightarrow y-x=1\\\\\\Rightarrow y-1=1\\\\\\Rightarrow \\boxed{y=2}"
and
"t+\\frac{1}{2}z=\\frac{7}{2}\\ \\ ......(i)\\\\\\ \\\\t-z=3\\ \\ .........(ii)\\\\Subtracting\\ equations \\ (ii)\\ from\\ (i)\\\\We\\ get\\\\\\boxed{z=\\frac{1}{3}}\\\\and\\ \\\\t-z=3\\\\t-\\frac{1}{3}=3\\\\\\boxed{t=\\dfrac{10}{3}}"
Comments
Leave a comment