Solve for x, y, z, and t in the matrix equation below. 3x y − x t + 1 2 z t − z = 3 1 7 2 3 .
To solve for x, y , z, t
[3xy−xt+12zt−z]=[31723]\begin{bmatrix} 3x & y-x \\ t+\frac{1}{2}z & t-z \end{bmatrix}=\begin{bmatrix} 3 & 1 \\ \frac{7}{2} & 3 \end{bmatrix}[3xt+21zy−xt−z]=[32713]
On comparing:
⇒3x=3⇒x=1\Rightarrow 3x=3\\\Rightarrow\boxed{x=1}⇒3x=3⇒x=1
⇒y−x=1⇒y−1=1⇒y=2\Rightarrow y-x=1\\\Rightarrow y-1=1\\\Rightarrow \boxed{y=2}⇒y−x=1⇒y−1=1⇒y=2
and
t+12z=72 ......(i) t−z=3 .........(ii)Subtracting equations (ii) from (i)We getz=13and t−z=3t−13=3t=103t+\frac{1}{2}z=\frac{7}{2}\ \ ......(i)\\\ \\t-z=3\ \ .........(ii)\\Subtracting\ equations \ (ii)\ from\ (i)\\We\ get\\\boxed{z=\frac{1}{3}}\\and\ \\t-z=3\\t-\frac{1}{3}=3\\\boxed{t=\dfrac{10}{3}}t+21z=27 ......(i) t−z=3 .........(ii)Subtracting equations (ii) from (i)We getz=31and t−z=3t−31=3t=310
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment