Question #186527

What are the domain and range for these equations?

  1. f(x)= square root of (x-1)
  2. f(x)=6x-1/1-2x
  3. the inverse of function f(x) = square root of (x-1)
1
Expert's answer
2021-05-07T10:05:49-0400

Solution.

1.

f(x)=x1f(x)=\sqrt{x-1}


Domain: x[1,).x \in [1,\infty).

Range: y[0,).y\in [0,\infty).

2.


f(x)=6x112xf(x)=\frac{6x-1}{1-2x}

Domain: xR\{12}.x \in R \backslash\{\frac{1}{2}\}.

limx±6x112x=limx±61x1x2=62=3.\lim_{x\to\pm\infty}\frac{6x-1}{1-2x}=\lim_{x\to\pm\infty}\frac{6-\frac{1}{x}}{\frac{1}{x}-2}=\frac{6}{-2}=-3.

So,

Range: y(,)\{3}.y\in (-\infty,\infty)\backslash\{-3\}.

3.


f(x)=x1,f2(x)=x1,x=f2(x)+1,f1(x)=x2+1,x0.f(x)=\sqrt{x-1},\newline f^2(x)=x-1,\newline x=f^2(x)+1,\newline f^{-1}(x)=x^2+1, x\geq0.


Domain: x[0,).x\in [0,\infty).

Range: y[1,).y\in [1,\infty).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS