Answer to Question #190362 in Linear Algebra for Regomoditswe Dibob

Question #190362

Let P(x) = x 2 − x − 6. Compute P(A) for A =  3 −1 0 −2 


1
Expert's answer
2021-05-12T02:08:21-0400

Given,

P(x)=x2x6P(x)=x^2-x-6

=x23x+2x6=x^2-3x+2x-6

=x(x3)+2(x3)=x(x-3)+2(x-3)

=(x3)(x+2)=(x-3)(x+2)

As here matrix A=[3102]A=\begin{bmatrix} 3 & -1\\ 0 &2 \end{bmatrix}

Matrix order is 2×22\times 2

Hence, A2=[3102][3102]A^2=\begin{bmatrix} 3 & -1\\ 0 & 2 \end{bmatrix}\begin{bmatrix} 3 & -1\\ 0 & 2 \end{bmatrix}


=[9(32)04]=\begin{bmatrix} 9 & (-3-2)\\ 0 & 4 \end{bmatrix}


=[9(5)04]=\begin{bmatrix} 9 & (-5)\\ 0 & 4 \end{bmatrix}

Now, substituting the values,

P(A)=A2A6P(A)=A^2-A-6

Hence,

=[9(5)04][3102]6[1001]=\begin{bmatrix} 9 & (-5)\\ 0 & 4 \end{bmatrix}-\begin{bmatrix} 3 & -1\\ 0 &2 \end{bmatrix}-6\begin{bmatrix} 1 & 0\\ 0 &1 \end{bmatrix}


=[0400]=\begin{bmatrix} 0 & -4\\ 0 &0 \end{bmatrix}


Hence P(A)=[0400]=\begin{bmatrix} 0 & -4\\ 0 &0 \end{bmatrix} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
15.07.21, 21:18

Dear Rebecca, please use the panel for submitting a new question.


Rebecca
31.05.21, 23:09

Without calculating the determinant, inspect the following: (3.1) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 -2 (3.2) 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1/4 0

Leave a comment