Answer to Question #190362 in Linear Algebra for Regomoditswe Dibob

Question #190362

Let P(x) = x 2 − x − 6. Compute P(A) for A =  3 −1 0 −2 


1
Expert's answer
2021-05-12T02:08:21-0400

Given,

"P(x)=x^2-x-6"

"=x^2-3x+2x-6"

"=x(x-3)+2(x-3)"

"=(x-3)(x+2)"

As here matrix "A=\\begin{bmatrix}\n3 & -1\\\\\n0 &2 \n\\end{bmatrix}"

Matrix order is "2\\times 2"

Hence, "A^2=\\begin{bmatrix}\n3 & -1\\\\\n0 & 2 \n\\end{bmatrix}\\begin{bmatrix}\n3 & -1\\\\\n0 & 2 \n\\end{bmatrix}"


"=\\begin{bmatrix}\n9 & (-3-2)\\\\\n0 & 4 \n\\end{bmatrix}"


"=\\begin{bmatrix}\n9 & (-5)\\\\\n0 & 4 \n\\end{bmatrix}"

Now, substituting the values,

"P(A)=A^2-A-6"

Hence,

"=\\begin{bmatrix}\n9 & (-5)\\\\\n0 & 4 \n\\end{bmatrix}-\\begin{bmatrix}\n3 & -1\\\\\n0 &2 \n\\end{bmatrix}-6\\begin{bmatrix}\n1 & 0\\\\\n0 &1 \n\\end{bmatrix}"


"=\\begin{bmatrix}\n0 & -4\\\\\n0 &0\n\\end{bmatrix}"


Hence P(A)"=\\begin{bmatrix}\n0 & -4\\\\\n0 &0\n\\end{bmatrix}" .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
15.07.21, 21:18

Dear Rebecca, please use the panel for submitting a new question.


Rebecca
31.05.21, 23:09

Without calculating the determinant, inspect the following: (3.1) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 -2 (3.2) 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1/4 0

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS