Let P(x) = x 2 − x − 6. Compute P(A) for A = 3 −1 0 −2
Given,
"P(x)=x^2-x-6"
"=x^2-3x+2x-6"
"=x(x-3)+2(x-3)"
"=(x-3)(x+2)"
As here matrix "A=\\begin{bmatrix}\n3 & -1\\\\\n0 &2 \n\\end{bmatrix}"
Matrix order is "2\\times 2"
Hence, "A^2=\\begin{bmatrix}\n3 & -1\\\\\n0 & 2 \n\\end{bmatrix}\\begin{bmatrix}\n3 & -1\\\\\n0 & 2 \n\\end{bmatrix}"
"=\\begin{bmatrix}\n9 & (-3-2)\\\\\n0 & 4 \n\\end{bmatrix}"
"=\\begin{bmatrix}\n9 & (-5)\\\\\n0 & 4 \n\\end{bmatrix}"
Now, substituting the values,
"P(A)=A^2-A-6"
Hence,
"=\\begin{bmatrix}\n9 & (-5)\\\\\n0 & 4 \n\\end{bmatrix}-\\begin{bmatrix}\n3 & -1\\\\\n0 &2 \n\\end{bmatrix}-6\\begin{bmatrix}\n1 & 0\\\\\n0 &1 \n\\end{bmatrix}"
"=\\begin{bmatrix}\n0 & -4\\\\\n0 &0\n\\end{bmatrix}"
Hence P(A)"=\\begin{bmatrix}\n0 & -4\\\\\n0 &0\n\\end{bmatrix}" .
Comments
Dear Rebecca, please use the panel for submitting a new question.
Without calculating the determinant, inspect the following: (3.1) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 -2 (3.2) 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1/4 0
Leave a comment