Answer to Question #190381 in Linear Algebra for Regomoditswe Dibob

Question #190381

Consider the given matrix B =   2 2 0 1 0 1 0 1 1   . Find detB and use it to determine whether or not B is invertible, and if so, find B −1 . (Hint: Use the matrix equation BX = I)


1
Expert's answer
2021-05-18T06:32:01-0400
"B=\\begin{pmatrix}\n 2 & 2 & 0 \\\\\n 1 & 0 & 1 \\\\\n0 & 1 & 1\n\\end{pmatrix}"

"\\text{det}B=\\begin{vmatrix}\n 2 & 2 & 0 \\\\\n 1 & 0 & 1 \\\\\n0 & 1 & 1\n\\end{vmatrix}"

"=(-1)^{1+1}\\cdot 2\\cdot\\begin{vmatrix}\n 0 & 1 \\\\\n 1 & 1\n\\end{vmatrix}+(-1)^{2+1}\\cdot 1\\cdot\\begin{vmatrix}\n 2 & 0 \\\\\n 1 & 1\n\\end{vmatrix}"

"+(-1)^{3+1}\\cdot 0\\cdot\\begin{vmatrix}\n 0 & 1 \\\\\n 1 & 1\n\\end{vmatrix}="

"=2(0-1)-(2-0)=-4\\not=0"

Therefore the matrix "B" is invertible and "B^{-1}" exists.


Augment the matrix with the identity matrix:


"\\begin{bmatrix}\n 2 & 2 & 0 & & 1 & 0 & 0 \\\\\n 1 & 0 & 1 & & 0 & 1 & 0 \\\\\n0 & 1 & 1 & & 0 & 0 & 1 \\\\\n\\end{bmatrix}"



"R_1=\\dfrac{R_1}{2}"


"\\begin{bmatrix}\n 1 & 1 & 0 & & 1\/2 & 0 & 0 \\\\\n 1 & 0 & 1 & & 0 & 1 & 0 \\\\\n0 & 1 & 1 & & 0 & 0 & 1 \\\\\n\\end{bmatrix}"


"R_2=R_2-R_1"


"\\begin{bmatrix}\n 1 & 1 & 0 & & 1\/2 & 0 & 0 \\\\\n 0 & -1 & 1 & & -1\/2 & 1 & 0 \\\\\n0 & 1 & 1 & & 0 & 0 & 1 \\\\\n\\end{bmatrix}"


"R_2=-R_2"


"\\begin{bmatrix}\n 1 & 1 & 0 & & 1\/2 & 0 & 0 \\\\\n 0 & 1 & -1 & & 1\/2 & -1 & 0 \\\\\n0 & 1 & 1 & & 0 & 0 & 1 \\\\\n\\end{bmatrix}"

"R_1=R_1-R_2"


"\\begin{bmatrix}\n 1 & 0 & 1 & & 0 & 1 & 0 \\\\\n 0 & 1 & -1 & & 1\/2 & -1 & 0 \\\\\n0 & 1 & 1 & & 0 & 0 & 1 \\\\\n\\end{bmatrix}"


"R_3=R_3-R_2"


"\\begin{bmatrix}\n 1 & 0 & 1 & & 0 & 1 & 0 \\\\\n 0 & 1 & -1 & & 1\/2 & -1 & 0 \\\\\n0 & 0 & 2 & & -1\/2 & 1 & 1 \\\\\n\\end{bmatrix}"


"R_3=R_3\/2"


"\\begin{bmatrix}\n 1 & 0 & 1 & & 0 & 1 & 0 \\\\\n 0 & 1 & -1 & & 1\/2 & -1 & 0 \\\\\n0 & 0 & 1 & & -1\/4 & 1\/2 & 1\/2 \\\\\n\\end{bmatrix}"


"R_1=R_1-R_3"


"\\begin{bmatrix}\n 1 & 0 & 0 & & 1\/4 & 1\/2 & -1\/2 \\\\\n 0 & 1 & -1 & & 1\/2 & -1 & 0 \\\\\n0 & 0 & 1 & & -1\/4 & 1\/2 & 1\/2 \\\\\n\\end{bmatrix}"


"R_2=R_2+R_3"


"\\begin{bmatrix}\n 1 & 0 & 0 & & 1\/4 & 1\/2 & -1\/2 \\\\\n 0 & 1 & 0 & & 1\/4 & -1\/2 & 1\/2 \\\\\n0 & 0 & 1 & & -1\/4 & 1\/2 & 1\/2 \\\\\n\\end{bmatrix}"

On the left is the identity matrix. On the right is the inverse matrix.



"B^{-1}=\\begin{pmatrix}\n 1\/4 & 1\/2 & -1\/2 \\\\\n 1\/4 & -1\/2 & 1\/2 \\\\\n-1\/4 & 1\/2 & 1\/2\n\\end{pmatrix}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS