"B=\\begin{pmatrix}\n 2 & 2 & 0 \\\\\n 1 & 0 & 1 \\\\\n0 & 1 & 1\n\\end{pmatrix}"
"\\text{det}B=\\begin{vmatrix}\n 2 & 2 & 0 \\\\\n 1 & 0 & 1 \\\\\n0 & 1 & 1\n\\end{vmatrix}"
"=(-1)^{1+1}\\cdot 2\\cdot\\begin{vmatrix}\n 0 & 1 \\\\\n 1 & 1\n\\end{vmatrix}+(-1)^{2+1}\\cdot 1\\cdot\\begin{vmatrix}\n 2 & 0 \\\\\n 1 & 1\n\\end{vmatrix}"
"+(-1)^{3+1}\\cdot 0\\cdot\\begin{vmatrix}\n 0 & 1 \\\\\n 1 & 1\n\\end{vmatrix}="
"=2(0-1)-(2-0)=-4\\not=0" Therefore the matrix "B" is invertible and "B^{-1}" exists.
Augment the matrix with the identity matrix:
"\\begin{bmatrix}\n 2 & 2 & 0 & & 1 & 0 & 0 \\\\\n 1 & 0 & 1 & & 0 & 1 & 0 \\\\\n0 & 1 & 1 & & 0 & 0 & 1 \\\\\n\\end{bmatrix}"
"R_1=\\dfrac{R_1}{2}"
"\\begin{bmatrix}\n 1 & 1 & 0 & & 1\/2 & 0 & 0 \\\\\n 1 & 0 & 1 & & 0 & 1 & 0 \\\\\n0 & 1 & 1 & & 0 & 0 & 1 \\\\\n\\end{bmatrix}"
"R_2=R_2-R_1"
"\\begin{bmatrix}\n 1 & 1 & 0 & & 1\/2 & 0 & 0 \\\\\n 0 & -1 & 1 & & -1\/2 & 1 & 0 \\\\\n0 & 1 & 1 & & 0 & 0 & 1 \\\\\n\\end{bmatrix}"
"R_2=-R_2"
"\\begin{bmatrix}\n 1 & 1 & 0 & & 1\/2 & 0 & 0 \\\\\n 0 & 1 & -1 & & 1\/2 & -1 & 0 \\\\\n0 & 1 & 1 & & 0 & 0 & 1 \\\\\n\\end{bmatrix}"
"R_1=R_1-R_2"
"\\begin{bmatrix}\n 1 & 0 & 1 & & 0 & 1 & 0 \\\\\n 0 & 1 & -1 & & 1\/2 & -1 & 0 \\\\\n0 & 1 & 1 & & 0 & 0 & 1 \\\\\n\\end{bmatrix}"
"R_3=R_3-R_2"
"\\begin{bmatrix}\n 1 & 0 & 1 & & 0 & 1 & 0 \\\\\n 0 & 1 & -1 & & 1\/2 & -1 & 0 \\\\\n0 & 0 & 2 & & -1\/2 & 1 & 1 \\\\\n\\end{bmatrix}"
"R_3=R_3\/2"
"\\begin{bmatrix}\n 1 & 0 & 1 & & 0 & 1 & 0 \\\\\n 0 & 1 & -1 & & 1\/2 & -1 & 0 \\\\\n0 & 0 & 1 & & -1\/4 & 1\/2 & 1\/2 \\\\\n\\end{bmatrix}"
"R_1=R_1-R_3"
"\\begin{bmatrix}\n 1 & 0 & 0 & & 1\/4 & 1\/2 & -1\/2 \\\\\n 0 & 1 & -1 & & 1\/2 & -1 & 0 \\\\\n0 & 0 & 1 & & -1\/4 & 1\/2 & 1\/2 \\\\\n\\end{bmatrix}"
"R_2=R_2+R_3"
"\\begin{bmatrix}\n 1 & 0 & 0 & & 1\/4 & 1\/2 & -1\/2 \\\\\n 0 & 1 & 0 & & 1\/4 & -1\/2 & 1\/2 \\\\\n0 & 0 & 1 & & -1\/4 & 1\/2 & 1\/2 \\\\\n\\end{bmatrix}" On the left is the identity matrix. On the right is the inverse matrix.
"B^{-1}=\\begin{pmatrix}\n 1\/4 & 1\/2 & -1\/2 \\\\\n 1\/4 & -1\/2 & 1\/2 \\\\\n-1\/4 & 1\/2 & 1\/2\n\\end{pmatrix}"
Comments
Leave a comment