Consider the given matrix B = 2 2 0 1 0 1 0 1 1 . Find detB and use it to determine whether or not B is invertible, and if so, find B −1 . (Hint: Use the matrix equation BX = I)
| 2 2 0 |
det B = det | 1 0 1 | =
| 0 1 1 |
2*0*1 + 2*1*0 + 0*1*1 - 0*0*0 - 2*1*1 - 2*1*1 = -4
As the determinant is not zero, the matrix B is invertable and
1 | C_11 C_12 C_13 |T
B^(-1) = ----- * | C_21 C_22 C_23 | , wher C is a matrix of cofactors
det B | C_31 C_32 C_33 |
C_11 = det|0 1| = -1 C_12 = -det|1 1| = -1 C_13 = det|1 0| = 1
|1 1] |0 1| |0 1|
C_21 = -det|2 0| = -2 C_22 = det|2 0| = 2 C_23 = -det|2 2| = -2
|1 1] |0 1| |0 1|
C_31 = det|2 0| = 2 C_32 = -det|2 0| = -2 C_33 = det|2 2| = -2
|0 1] |1 1| |1 0|
1 |-1 -2 2|
So B^(-1) = ---|-1 2 -2|
-4 | 1 -2 -2|
Comments
Leave a comment