Answer to Question #173501 in Linear Algebra for ANJU JAYACHANDRAN

Question #173501

6(b) Write the dual of the following LPP after reducing it to canonical form. (4) 

 Min 3 1 4 2 3 3 Z = x + x + x

 Subject to 

 2x1 + 4x2 =12

 11 5x1 + 3x3 ≥

 6x1 + x2 ≥ 8

 x1

, x2

, x3 ≥ 0


1
Expert's answer
2021-04-15T07:20:29-0400

Solution.

z=3x1+4x2+3x3min,2x1+4x2=12,5x1+3x3>=11,6x1+x2>=8,x1,x2,x3>=0.z=3x_1+4x_2+3x_3 - min, \newline 2x_1+4x_2=12,\newline 5x_1+3x_3>=11, \newline 6x_1+x_2>=8, \newline x_1,x_2,x_3>=0.

Reduce it to canonical form:

2x1+4x2=12,5x13x3+x4=11,6x1x2+x5=8.2x_1+4x_2=12,\newline -5x_1-3x_3+x_4=-11, \newline -6x_1-x_2+x_5=-8. \newline

Introduce new variables x4,x5,x6:x_4, x_5,x_6:

2x1+4x2+x6=12,5x13x3+x4=11,6x1x2+x5=8.2x_1+4x_2+x_6=12,\newline -5x_1-3x_3+x_4=-11, \newline -6x_1-x_2+x_5=-8. \newline

then z=Mx6==M(122x14x2)==2Mx14Mx2+12Mminz = Mx_6=\newline =M(12-2x_1-4x_2)=\newline =-2Mx_1-4Mx_2+12M - min

Introduce new variable x_0:

x0=2x14x2.x_0=-2x_1-4x_2.

We will have:

x0=122x14x2,x_0=12-2x_1-4x_2,

x4=11+5x1+3x3,x5=8+6x1+x2,x6=122x14x2.x_4=-11+5x_1+3x_3,\newline x_5=-8+6x_1+x_2,\newline x_6=12-2x_1-4x_2.

This plan is not optimal because there are negative elements in the expression for x0x_0 . Select a new variable x1,x_1, then

x1=11535x3+15x4.x_1=\frac{11}{5}-\frac{3}{5}x_3+\frac{1}{5}x_4.

From here

x0=3854x2+65x325x4,x_0=\frac{38}{5}-4x_2+\frac{6}{5}x_3-\frac{2}{5}x_4,

x5=265+x2185x3+65x4,x6=3854x2+65x325x4.x_5=\frac{26}{5}+x_2-\frac{18}{5}x_3+\frac{6}{5}x_4,\newline x_6=\frac{38}{5}-4x_2+\frac{6}{5}x_3-\frac{2}{5}x_4.

The expression for x0x_0 has negative elements, the plan is not optimal. The largest coefficient is near x2x_2 , then choose x2x_2 as a new variable.

x2=1910+310x3110x414x6,x0=0+x6,x1=11535x3+15x4,x5=71103310x3+1110x414x6.x_2=\frac{19}{10}+\frac{3}{10}x_3-\frac{1}{10}x_4-\frac{1}{4}x_6, \newline x_0=0+x_6, \newline x_1=\frac{11}{5}-\frac{3}{5}x_3+\frac{1}{5}x_4,\newline x_5=\frac{71}{10}-\frac{33}{10}x_3+\frac{11}{10}x_4-\frac{1}{4}x_6.

The expression for x0x_0

has positive elements, the plan is optimal.

We will deduce variables x4,x5,x6x_4, x_5,x_6 from basis:

x0=715+125x3+15x4,x_0=\frac{71}{5}+\frac{12}{5}x_3+\frac{1}{5}x_4,

x1=11535x3+15x4,x_1=\frac{11}{5}-\frac{3}{5}x_3+\frac{1}{5}x_4,

x2=1910+310x3110x4,x5=71103310x3+1110x4.x_2=\frac{19}{10}+\frac{3}{10}x_3-\frac{1}{10}x_4,\newline x_5=\frac{71}{10}-\frac{33}{10}x_3+\frac{11}{10}x_4.

Optimal plan:

x1=215,x2=1910,x3=0.x_1=2\frac{1}{5}, x_2=1\frac{9}{10}, x_3=0.

So, min z(x)=1415.z(x)=14\frac{1}{5}.

Answer. min z(x)=1415.z(x)=14\frac{1}{5}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment