Solution.
z=3x1+4x2+3x3−min,2x1+4x2=12,5x1+3x3>=11,6x1+x2>=8,x1,x2,x3>=0.
Reduce it to canonical form:
2x1+4x2=12,−5x1−3x3+x4=−11,−6x1−x2+x5=−8.
Introduce new variables x4,x5,x6:
2x1+4x2+x6=12,−5x1−3x3+x4=−11,−6x1−x2+x5=−8.
then z=Mx6==M(12−2x1−4x2)==−2Mx1−4Mx2+12M−min
Introduce new variable x_0:
x0=−2x1−4x2.
We will have:
x0=12−2x1−4x2,
x4=−11+5x1+3x3,x5=−8+6x1+x2,x6=12−2x1−4x2.
This plan is not optimal because there are negative elements in the expression for x0 . Select a new variable x1, then
x1=511−53x3+51x4.
From here
x0=538−4x2+56x3−52x4,
x5=526+x2−518x3+56x4,x6=538−4x2+56x3−52x4.
The expression for x0 has negative elements, the plan is not optimal. The largest coefficient is near x2 , then choose x2 as a new variable.
x2=1019+103x3−101x4−41x6,x0=0+x6,x1=511−53x3+51x4,x5=1071−1033x3+1011x4−41x6.
The expression for x0
has positive elements, the plan is optimal.
We will deduce variables x4,x5,x6 from basis:
x0=571+512x3+51x4,
x1=511−53x3+51x4,
x2=1019+103x3−101x4,x5=1071−1033x3+1011x4.
Optimal plan:
x1=251,x2=1109,x3=0.
So, min z(x)=1451.
Answer. min z(x)=1451.
Comments
Leave a comment