6(b) Write the dual of the following LPP after reducing it to canonical form. (4)
Min 3 1 4 2 3 3 Z = x + x + x
Subject to
2x1 + 4x2 =12
11 5x1 + 3x3 ≥
6x1 + x2 ≥ 8
x1
, x2
, x3 ≥ 0
Solution.
"z=3x_1+4x_2+3x_3 - min, \\newline\n2x_1+4x_2=12,\\newline\n5x_1+3x_3>=11, \\newline\n6x_1+x_2>=8, \\newline\nx_1,x_2,x_3>=0."
Reduce it to canonical form:
"2x_1+4x_2=12,\\newline\n-5x_1-3x_3+x_4=-11, \\newline\n-6x_1-x_2+x_5=-8. \\newline"
Introduce new variables "x_4, x_5,x_6:"
"2x_1+4x_2+x_6=12,\\newline\n-5x_1-3x_3+x_4=-11, \\newline\n-6x_1-x_2+x_5=-8. \\newline"
then "z = Mx_6=\\newline =M(12-2x_1-4x_2)=\\newline =-2Mx_1-4Mx_2+12M - min"
Introduce new variable x_0:
"x_0=-2x_1-4x_2."
We will have:
"x_0=12-2x_1-4x_2,"
"x_4=-11+5x_1+3x_3,\\newline\nx_5=-8+6x_1+x_2,\\newline\nx_6=12-2x_1-4x_2."
This plan is not optimal because there are negative elements in the expression for "x_0" . Select a new variable "x_1," then
"x_1=\\frac{11}{5}-\\frac{3}{5}x_3+\\frac{1}{5}x_4."
From here
"x_0=\\frac{38}{5}-4x_2+\\frac{6}{5}x_3-\\frac{2}{5}x_4,"
"x_5=\\frac{26}{5}+x_2-\\frac{18}{5}x_3+\\frac{6}{5}x_4,\\newline\nx_6=\\frac{38}{5}-4x_2+\\frac{6}{5}x_3-\\frac{2}{5}x_4."
The expression for "x_0" has negative elements, the plan is not optimal. The largest coefficient is near "x_2" , then choose "x_2" as a new variable.
"x_2=\\frac{19}{10}+\\frac{3}{10}x_3-\\frac{1}{10}x_4-\\frac{1}{4}x_6,\n\\newline\nx_0=0+x_6,\n\\newline\nx_1=\\frac{11}{5}-\\frac{3}{5}x_3+\\frac{1}{5}x_4,\\newline\nx_5=\\frac{71}{10}-\\frac{33}{10}x_3+\\frac{11}{10}x_4-\\frac{1}{4}x_6."
The expression for "x_0"
has positive elements, the plan is optimal.
We will deduce variables "x_4, x_5,x_6" from basis:
"x_0=\\frac{71}{5}+\\frac{12}{5}x_3+\\frac{1}{5}x_4,"
"x_1=\\frac{11}{5}-\\frac{3}{5}x_3+\\frac{1}{5}x_4,"
"x_2=\\frac{19}{10}+\\frac{3}{10}x_3-\\frac{1}{10}x_4,\\newline\nx_5=\\frac{71}{10}-\\frac{33}{10}x_3+\\frac{11}{10}x_4."
Optimal plan:
"x_1=2\\frac{1}{5}, x_2=1\\frac{9}{10}, x_3=0."
So, min "z(x)=14\\frac{1}{5}."
Answer. min "z(x)=14\\frac{1}{5}."
Comments
Leave a comment