Given that T(1,0,0) = (1,1,1), T(0,1,0) =(0,3,5) and T(0,0,1) =(2,2,2).
a) So matrix A with respect to the usual basis is
A=⎣⎡111035222⎦⎤
b) In order to get the matrix with respect to the basis S, we need to get the linear transformation that led us to matrix A.
T⎣⎡abc⎦⎤=⎣⎡111035222⎦⎤⎣⎡abc⎦⎤
i.e T(a,b,c)=(a+2c,a+3b+2c,a+5b+2c)
T(1,2,3)=(1+2(3),1+3(2)+2(3),1+5(2)+2(3))=(1+6,1+6+6,1+10+6)=(7,13,17)
T(2,3,4)=(2+2(4),2+3(3)+2(4),2+5(3)+2(4))=(2+8,2+9+8,2+15+8)=(10,19,25)
T(−1,0,1)=(−1+2(1),−1+3(0)+2(1),−1+5(0)+2(1))=(−1+2,−1+2,−1+2)=(1,1,1)
So, the matrix B representing T with respect to the basis S is
B=⎣⎡71317101925111⎦⎤
Comments