Given that T(1,0,0) = (1,1,1), T(0,1,0) =(0,3,5) and T(0,0,1) =(2,2,2).
a) So matrix A with respect to the usual basis is
A = [ 1 0 2 1 3 2 1 5 2 ] A = \begin{bmatrix} 1&0&2\\1&3&2\\ 1&5&2 \end{bmatrix} A = ⎣ ⎡ 1 1 1 0 3 5 2 2 2 ⎦ ⎤
b) In order to get the matrix with respect to the basis S, we need to get the linear transformation that led us to matrix A.
T [ a b c ] = [ 1 0 2 1 3 2 1 5 2 ] [ a b c ] T \begin{bmatrix} a \\b \\c \end{bmatrix} = \begin{bmatrix} 1&0&2\\1&3&2\\ 1&5&2 \end{bmatrix} \begin{bmatrix} a \\b \\c \end{bmatrix} T ⎣ ⎡ a b c ⎦ ⎤ = ⎣ ⎡ 1 1 1 0 3 5 2 2 2 ⎦ ⎤ ⎣ ⎡ a b c ⎦ ⎤
i.e T ( a , b , c ) = ( a + 2 c , a + 3 b + 2 c , a + 5 b + 2 c ) T(a,b,c) = (a+2c,a+3b+2c,a+5b+2c) T ( a , b , c ) = ( a + 2 c , a + 3 b + 2 c , a + 5 b + 2 c )
T ( 1 , 2 , 3 ) = ( 1 + 2 ( 3 ) , 1 + 3 ( 2 ) + 2 ( 3 ) , 1 + 5 ( 2 ) + 2 ( 3 ) ) = ( 1 + 6 , 1 + 6 + 6 , 1 + 10 + 6 ) = ( 7 , 13 , 17 ) T(1,2,3) = (1+2(3), 1+3(2)+2(3), 1+5(2)+2(3)) = (1+6,1+6+6,1+10+6) = (7,13,17) T ( 1 , 2 , 3 ) = ( 1 + 2 ( 3 ) , 1 + 3 ( 2 ) + 2 ( 3 ) , 1 + 5 ( 2 ) + 2 ( 3 )) = ( 1 + 6 , 1 + 6 + 6 , 1 + 10 + 6 ) = ( 7 , 13 , 17 )
T ( 2 , 3 , 4 ) = ( 2 + 2 ( 4 ) , 2 + 3 ( 3 ) + 2 ( 4 ) , 2 + 5 ( 3 ) + 2 ( 4 ) ) = ( 2 + 8 , 2 + 9 + 8 , 2 + 15 + 8 ) = ( 10 , 19 , 25 ) T(2,3,4) = (2+2(4),2+3(3)+2(4),2+5(3)+2(4)) = (2+8, 2+9+8,2+15+8) = (10,19,25) T ( 2 , 3 , 4 ) = ( 2 + 2 ( 4 ) , 2 + 3 ( 3 ) + 2 ( 4 ) , 2 + 5 ( 3 ) + 2 ( 4 )) = ( 2 + 8 , 2 + 9 + 8 , 2 + 15 + 8 ) = ( 10 , 19 , 25 )
T ( − 1 , 0 , 1 ) = ( − 1 + 2 ( 1 ) , − 1 + 3 ( 0 ) + 2 ( 1 ) , − 1 + 5 ( 0 ) + 2 ( 1 ) ) = ( − 1 + 2 , − 1 + 2 , − 1 + 2 ) = ( 1 , 1 , 1 ) T(-1,0,1) =(-1+2(1),-1+3(0)+2(1),-1+5(0)+2(1)) = (-1+2,-1+2,-1+2) =(1,1,1) T ( − 1 , 0 , 1 ) = ( − 1 + 2 ( 1 ) , − 1 + 3 ( 0 ) + 2 ( 1 ) , − 1 + 5 ( 0 ) + 2 ( 1 )) = ( − 1 + 2 , − 1 + 2 , − 1 + 2 ) = ( 1 , 1 , 1 )
So, the matrix B representing T with respect to the basis S is
B = [ 7 10 1 13 19 1 17 25 1 ] B= \begin{bmatrix} 7&10&1 \\13&19&1\\17&25&1 \end{bmatrix} B = ⎣ ⎡ 7 13 17 10 19 25 1 1 1 ⎦ ⎤
Comments