Answer to Question #171369 in Linear Algebra for Kings

Question #171369

reduce the following quadratic form 3x²-2y²-z²+12yz-4xy+8zx to canonical form by an orthogonal transformation. Also find the rank, index signature and nature


1
Expert's answer
2021-03-24T12:34:58-0400

CORRECTED SOLUTION

The quadratic form 3x²-2y²-z²+12yz-4xy+8zx has the matrix

A=(324226461)A=\begin{pmatrix} 3 & -2 & 4\\ -2 & -2 & 6\\ 4 &6 & -1 \end{pmatrix}

Its characteristic polynomial is

det(3λ2422λ6461λ)=λ3+63λ162\det \begin{pmatrix} 3-\lambda & -2 & 4\\ -2 & -2-\lambda & 6\\ 4 &6 & -1-\lambda \end{pmatrix}=-\lambda^3 +63\lambda-162

One can notice that λ=3\lambda=3 is a root of this polynomial.

λ363λ+162λ3=λ2+3λ54=(λ+9)(λ6)\frac{\lambda^3-63\lambda+162}{\lambda-3}=\lambda^2+3\lambda-54=(\lambda+9)(\lambda-6)

Therefore, λ1=3\lambda_1=3, λ2=6\lambda_2=6, λ3=9\lambda_3=-9 are all the eigenvalues of the given matrix.

Find the corresponding eigenvectors by solving the equations AX=λiXAX=\lambda_iX with i=1,2,3.

1) Case λ1=3\lambda_1=3. The equation AX=3XAX=3X implies

2y+4z=0-2y+4z=0

2x5y+6z=0-2x-5y+6z=0

The fundamental solution of this system is z=t,y=2t,x=2tz=t, y=2t, x=-2t.

Therefore, the first eigenvector is e1=(2,2,1)Te_1=(-2,2,1)^T. e1=(2)2+22+12=3|e_1|=\sqrt{(-2)^2+2^2+1^2}=3

2) Case λ2=6\lambda_2=6. The equation AX=6XAX=6X implies

3x2y+4z=0-3x-2y+4z=0

2x8y+6z=0-2x-8y+6z=0

The fundamental solution of this system is z=3228t=20t,y=4362t=10t,x=2486t=20tz=\begin{vmatrix} -3 & -2 \\ -2 & -8 \end{vmatrix}t=20t, y=\begin{vmatrix} 4 & -3 \\ 6 & -2 \end{vmatrix}t=10t, x=\begin{vmatrix} -2 & 4 \\ -8 & 6 \end{vmatrix}t=-20t.

Therefore, the second eigenvector is e2=(2,1,2)Te_2=(-2,1,2)^T. e2=(2)2+12+22=3|e_2|=\sqrt{(-2)^2+1^2+2^2}=3

3) Case λ3=9\lambda_3=-9. The equation AX=9XAX=-9X implies

12x2y+4z=012x-2y+4z=0

2x+7y+6z=0-2x+7y+6z=0

The fundamental solution of this system is

z=12227t=80t,y=41262t=80t,x=2476t=40tz=\begin{vmatrix} 12 & -2 \\ -2 & 7 \end{vmatrix}t=-80t, y=\begin{vmatrix} 4 & 12 \\ 6 & -2 \end{vmatrix}t=-80t, x=\begin{vmatrix} -2 & 4 \\ 7 & 6 \end{vmatrix}t=-40t.

Therefore, the third eigenvector is e3=(1,2,2)Te_3=(1,2,2)^T. e3=12+22+22=3|e_3|=\sqrt{1^2+2^2+2^2}=3

In the orthonormal basis e1/3,e2/3,e3/3e_1/3, e_2/3, e_3/3 the quadratic form will be

3y12+6y229y323y_1^2+6y_2^2-9y_3^2

This is the normal form of the given quadratic form. From it one can see that the quadratic form is non-degenerate, indefinite, its rank=3, its index (the number of positive terms) =2 and its signature (the difference between the number of positive terms and the number of negative terms) is 1.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment