Find the row echelon form of [
1 2 − 2 − 2 −3
1 3 − 2 0 −4
3 8 − 7 − 2 −11
2 1 − 9 − 10 − 3
].
Solution:
Given: "\\begin{bmatrix}1&2&-2&-2&-3\\\\ 1&3&-2&0&-4\\\\ 3&8&-7&-2&-11\\\\ 2&1&-9&-10&-3\\end{bmatrix}"
"R_1\\:\\leftrightarrow \\:R_3"
"=\\begin{bmatrix}3&8&-7&-2&-11\\\\ 1&3&-2&0&-4\\\\ 1&2&-2&-2&-3\\\\ 2&1&-9&-10&-3\\end{bmatrix}"
"R_2\\:\\rightarrow \\:R_2-\\frac{1}{3}\\cdot \\:R_1"
"=\\begin{bmatrix}3&8&-7&-2&-11\\\\ 0&\\frac{1}{3}&\\frac{1}{3}&\\frac{2}{3}&-\\frac{1}{3}\\\\ 1&2&-2&-2&-3\\\\ 2&1&-9&-10&-3\\end{bmatrix}"
"R_3\\:\\rightarrow \\:R_3-\\frac{1}{3}\\cdot \\:R_1"
"=\\begin{bmatrix}3&8&-7&-2&-11\\\\ 0&\\frac{1}{3}&\\frac{1}{3}&\\frac{2}{3}&-\\frac{1}{3}\\\\ 0&-\\frac{2}{3}&\\frac{1}{3}&-\\frac{4}{3}&\\frac{2}{3}\\\\ 2&1&-9&-10&-3\\end{bmatrix}"
"R_4\\:\\rightarrow \\:R_4-\\frac{2}{3}\\cdot \\:R_1"
"=\\begin{bmatrix}3&8&-7&-2&-11\\\\ 0&\\frac{1}{3}&\\frac{1}{3}&\\frac{2}{3}&-\\frac{1}{3}\\\\ 0&-\\frac{2}{3}&\\frac{1}{3}&-\\frac{4}{3}&\\frac{2}{3}\\\\ 0&-\\frac{13}{3}&-\\frac{13}{3}&-\\frac{26}{3}&\\frac{13}{3}\\end{bmatrix}"
"R_2\\:\\leftrightarrow \\:R_4"
"=\\begin{bmatrix}3&8&-7&-2&-11\\\\ 0&-\\frac{13}{3}&-\\frac{13}{3}&-\\frac{26}{3}&\\frac{13}{3}\\\\ 0&-\\frac{2}{3}&\\frac{1}{3}&-\\frac{4}{3}&\\frac{2}{3}\\\\ 0&\\frac{1}{3}&\\frac{1}{3}&\\frac{2}{3}&-\\frac{1}{3}\\end{bmatrix}"
"R_3\\:\\rightarrow \\:R_3-\\frac{2}{13}\\cdot \\:R_2\n\\\\ =\\begin{bmatrix}3&8&-7&-2&-11\\\\ 0&-\\frac{13}{3}&-\\frac{13}{3}&-\\frac{26}{3}&\\frac{13}{3}\\\\ 0&0&1&0&0\\\\ 0&\\frac{1}{3}&\\frac{1}{3}&\\frac{2}{3}&-\\frac{1}{3}\\end{bmatrix}"
"R_4\\:\\rightarrow \\:R_4+\\frac{1}{13}\\cdot \\:R_2\n\\\\ =\\begin{bmatrix}3&8&-7&-2&-11\\\\ 0&-\\frac{13}{3}&-\\frac{13}{3}&-\\frac{26}{3}&\\frac{13}{3}\\\\ 0&0&1&0&0\\\\ 0&0&0&0&0\\end{bmatrix}"
This is required reduce matrix to row echelon form.
Comments
Leave a comment