Solution:
Given: ⎣⎡11322381−2−2−7−9−20−2−10−3−4−11−3⎦⎤
R1↔R3
=⎣⎡31128321−7−2−2−9−20−2−10−11−4−3−3⎦⎤
R2→R2−31⋅R1
=⎣⎡301283121−731−2−9−232−2−10−11−31−3−3⎦⎤
R3→R3−31⋅R1
=⎣⎡3002831−321−73131−9−232−34−10−11−3132−3⎦⎤
R4→R4−32⋅R1
=⎣⎡3000831−32−313−73131−313−232−34−326−11−3132313⎦⎤
R2↔R4
=⎣⎡30008−313−3231−7−3133131−2−326−3432−1131332−31⎦⎤
R3→R3−132⋅R2=⎣⎡30008−313031−7−313131−2−326032−113130−31⎦⎤
R4→R4+131⋅R2=⎣⎡30008−31300−7−31310−2−32600−1131300⎦⎤
This is required reduce matrix to row echelon form.
Comments