Find the dual basis of {(1,0,1),(1,1,0),(0,1,1)} in R^3
We need to find vectors:
The condition equals to three systems of three equations. Each system will give us one vector for the dual base.
First vector:
"\\begin{cases}\n x_1+z_1=1 \\\\\n x_1+y_1=0 \\\\\n y_1+z_1=0 \\\\\n\\end{cases}"
"x_1=\\frac{1}{2}; y_1=-\\frac{1}{2}; z_1=\\frac{1}{2}"
"e'_1 = (\\frac{1}{2},-\\frac{1}{2},\\frac{1}{2}) \\\\"
Second vector:
"\\begin{cases}\n x_2+z_2=0 \\\\\n x_2+y_2=1 \\\\\n y_2+z_2=0 \\\\\n\\end{cases}"
"x_2=\\frac{1}{2}; y_2=\\frac{1}{2}; z_2=-\\frac{1}{2}"
"e'_2 = (\\frac{1}{2},\\frac{1}{2},-\\frac{1}{2}) \\\\"
Third vector:
"\\begin{cases}\n x_3+z_3=0 \\\\\n x_3+y_3=0 \\\\\n y_3+z_3=1 \\\\\n\\end{cases}"
"x_3=-\\frac{1}{2}; y_3=\\frac{1}{2}; z_3=\\frac{1}{2}"
"e'_3 = (-\\frac{1}{2},\\frac{1}{2},\\frac{1}{2}) \\\\"
Answer: "e'_1 = (\\frac{1}{2},-\\frac{1}{2},\\frac{1}{2}) \\\\" ; "e'_2 = (\\frac{1}{2},\\frac{1}{2},-\\frac{1}{2}) \\\\" ; "e'_3 = (-\\frac{1}{2},\\frac{1}{2},\\frac{1}{2}) \\\\".
Comments
Leave a comment