We need to find vectors:
e1′=(x1,y1,z1)e2′=(x2,y2,z2)e3′=(x3,y3,z3)The condition equals to three systems of three equations. Each system will give us one vector for the dual base.
First vector:
⎩⎨⎧x1+z1=1x1+y1=0y1+z1=0
x1=21;y1=−21;z1=21
e1′=(21,−21,21) Second vector:
⎩⎨⎧x2+z2=0x2+y2=1y2+z2=0
x2=21;y2=21;z2=−21
e2′=(21,21,−21) Third vector:
⎩⎨⎧x3+z3=0x3+y3=0y3+z3=1
x3=−21;y3=21;z3=21
e3′=(−21,21,21)
Answer: e1′=(21,−21,21) ; e2′=(21,21,−21) ; e3′=(−21,21,21).
Comments