Question #167940

Express v=(2,-5,3) in R3 as a linear combination of the vectors U1 =(1,-3,2) , U2=(2,-4,-1), U3 =(1,-5,7)


1
Expert's answer
2021-03-05T01:26:58-0500

Rewriting the equation in the form,

[253]=x[132]+y[241]+z[157][x+2y+z3x4y5z2xy+7z]=[253]reducing the matrix from the back yields.[x+2y+z=23x4y5z=52xy+7z=3]2R1+R3    R33R1+R2    R2[x+2y+z=22y2z=15y+5z=1]52R2+R3    R3[x+2y+z=22y2z=10=32]The system has no solution.Thus it is impossible to write the vector v as a linear combination ofu1,u2,u3\begin{bmatrix} 2 \\ -5\\ 3 \end{bmatrix}= x\begin{bmatrix} 1 \\ -3\\ 2 \end{bmatrix}+y\begin{bmatrix} 2 \\ -4\\ -1 \end{bmatrix}+z\begin{bmatrix} 1 \\ -5\\ 7 \end{bmatrix}\\ \begin{bmatrix} x + 2y + z \\ -3x -4y -5z \\ 2x -y +7z \end{bmatrix}=\begin{bmatrix} 2 \\ -5\\ 3 \end{bmatrix}\\ \text{reducing the matrix from the back yields}\\. \begin{bmatrix} x + 2y + z=2 \\ -3x -4y -5z=-5 \\ 2x -y +7z=3 \end{bmatrix}\\ -2R_1+R_3 \implies R_3\\ 3R_1+R_2 \implies R_2\\ \begin{bmatrix} x + 2y + z=2 \\ 2y -2z=1 \\ -5y +5z=-1 \end{bmatrix}\\ \frac{5}{2}R_2+R_3 \implies R_3\\ \\ \begin{bmatrix} x + 2y + z=2 \\ 2y -2z=1 \\ 0=\frac{3}{2} \end{bmatrix}\\ \text{The system has no solution.}\\ \text{Thus it is impossible to write the vector v as a linear combination of}\\u_1, u_2, u_3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Muhammad Zubair
28.06.21, 18:14

Very best. Thank you teacher the same question is in our assignment. Thank you very much

LATEST TUTORIALS
APPROVED BY CLIENTS