Show that T:R^3 →R^2: T(x,y,z)= (2x+y-z,x+z) is a linear transformation. Verify that T satisfies the Rank-nullity theorem
Let us show that "T: \\mathbb R^3 \\to \\mathbb R^2,\\ \\ T(x,y,z) = (2x+y-z,x+z)," is a linear transformation.
Let "a,b\\in \\mathbb R,\\ (x_1,y_1,z_1),(x_2,y_2,z_2)\\in\\mathbb R^3." Then "T[a(x_1,y_1,z_1)+b(x_2,y_2,z_2)]=T[(ax_1+bx_2, ay_1+by_2, az_1+bz_2)]=\n(2(ax_1+bx_2)+ay_1+by_2-(az_1+bz_2), ax_1+bx_2+az_1+bz_2)=\n(2ax_1+2bx_2+ay_1+by_2-az_1-bz_2, ax_1+bx_2+az_1+bz_2)=\n(a(2x_1+y_1-z_1)+b(2x_2+y_2-z_2), a(x_1+z_1)+b(x_2+z_2))=\n(a(2x_1+y_1-z_1), a(x_1+z_1))+(b(2x_2+y_2-z_2), b(x_2+z_2))=\na(2x_1+y_1-z_1, x_1+z_1)+b(2x_2+y_2-z_2, x_2+z_2)=\naT(x_1,y_1,z_1)+bT(x_2,y_2,z_2)"
Therefore, "T" is a linear transformation.
Let us find its kernel:
"\\ker(T)=\\{(x,y,z)\\in\\mathbb R^3\\ |\\ T(x,y,z)=(0,0)\\}=\n\\{(x,y,z)\\in\\mathbb R^3\\ |\\ (2x+y-z,x+z)=(0,0)\\}=\n\\{(x,y,z)\\in\\mathbb R^3\\ |\\ 2x+y-z=0, x+z=0\\}=\n\\{(x,y,z)\\in\\mathbb R^3\\ |\\ y=z-2x, x=-z\\}=\n\\{(x,y,z)\\in\\mathbb R^3\\ |\\ y=3z, x=-z\\}=\n\\{(-z,3z,z)\\ |\\ z\\in\\mathbb R\\}=\\{z(-1,3,1)\\ |\\ z\\in\\mathbb R\\}"
It follows that "\\dim(\\ker T)=1."
Let us find "Im(T)." Let "(a,b)\\in\\mathbb R^2" be arbitrary. Then "T[(b, a-2b, 0)]=(2b+a-2b+0, b+0)=(a,b)", and therefore, "T" is surjective. It followws that "\\dim(Im T)=\\dim(\\mathbb R^2)=2"
Consequently, "T" satisfies the Rank-nullity theorem:
"\\dim(\\ker T)+\\dim(Im T)=1+2=3=\\dim(\\mathbb R^3)."
Comments
Leave a comment