Solution.
"A=\\begin{pmatrix}\n \\frac{1}{\\sqrt{3}} & \\frac{1}{\\sqrt{6}} & -\\frac{1}{\\sqrt{2}} \\\\\n \\frac{1}{\\sqrt{3}} & -\\frac{2}{\\sqrt{6}} & 0 \\\\\n \\frac{1}{\\sqrt{3}} & \\frac{1}{\\sqrt{6}} & \\frac{1}{\\sqrt{2}} \\\\\n\\end{pmatrix}"
An orthogonal matrix is a nondegenerate square matrix "A" (usually with real elements) such that
"AA^{T}=A^{T}A=I," where "A^{T}" is transposed matrix to matrix "A", and "I" is the identity matrix.
"\\det A=-\\frac{1}{3}-\\frac{1}{6}-\\frac{1}{3}-\\frac{1}{6}=-1\\neq0."
"A^{T}=\\begin{pmatrix}\n \\frac{1}{\\sqrt{3}} & \\frac{1}{\\sqrt{3}} & \\frac{1}{\\sqrt{3}} \\\\\n \\frac{1}{\\sqrt{6}} & -\\frac{2}{\\sqrt{6}} & \\frac{1}{\\sqrt{6}} \\\\\n -\\frac{1}{\\sqrt{2}} & 0 & \\frac{1}{\\sqrt{2}} \\\\\n\\end{pmatrix}""AA^{T}=\\begin{pmatrix}\n \\frac{1}{\\sqrt{3}} & \\frac{1}{\\sqrt{6}} & -\\frac{1}{\\sqrt{2}} \\\\\n \\frac{1}{\\sqrt{3}} & -\\frac{2}{\\sqrt{6}} & 0 \\\\\n \\frac{1}{\\sqrt{3}} & \\frac{1}{\\sqrt{6}} & \\frac{1}{\\sqrt{2}} \\\\\n\\end{pmatrix}\n\\cdot \\begin{pmatrix}\n \\frac{1}{\\sqrt{3}} & \\frac{1}{\\sqrt{3}} & \\frac{1}{\\sqrt{3}} \\\\\n \\frac{1}{\\sqrt{6}} & -\\frac{2}{\\sqrt{6}} & \\frac{1}{\\sqrt{6}} \\\\\n -\\frac{1}{\\sqrt{2}} & 0 & \\frac{1}{\\sqrt{2}} \\\\\n\\end{pmatrix}=\\newline\n=\\begin{pmatrix}\n 1 & 0 & 0 \\\\\n 0 & 1 & 0 \\\\\n 0 & 0 & 1 \\\\\n\\end{pmatrix}=I.""A^{T}A=I." Answer. Yes, "A" is orthogonal matrix.
Comments
Leave a comment