solve a system step-by-step of linear equations using Gaussian elimination.
2x + 7y + z = 1
x + 3y - z = 2
x + 7y + 12z = 45
"\\begin{pmatrix}\n 2 & 7 & 1 &| 1 \\\\\n 1 & 3 &-1 & |2 \\\\\n 1 & 7 & 12 &|45 \\\\\n\\end{pmatrix} \\underrightarrow{R_3 + (-R_2)}\n\\begin{pmatrix}\n 2 & 7 & 1 &| 1 \\\\\n 1 & 3 &-1 & |2 \\\\\n 0 & 4 & 13 &|43 \\\\\n\\end{pmatrix} \\underrightarrow{R_2 + (-\\frac{1}{2}R_1)}\n\\begin{pmatrix}\n 2 & 7 & 1 &| 1 \\\\\n 0 & -\\frac{1}{2} &-\\frac{3}{2} & |\\frac{3}{2} \\\\\n 0 & 4 & 13 &|43 \\\\\n\\end{pmatrix} \\\\"
"\\\\\n\\\\\n\\underrightarrow{R_3 + 8R_2}\n\\begin{pmatrix}\n 2 & 7 & 1 &| 1 \\\\\n 0 & -\\frac{1}{2} &-\\frac{3}{2} & |\\frac{3}{2} \\\\\n 0 & 0 & 1 &|55 \\\\\n\\end{pmatrix} \\underrightarrow{\\frac{1}{2}R_1 ; -2R_2;}\n\\begin{pmatrix}\n 1 & \\frac{7}{2} & \\frac{1}{2} &| \\frac{1}{2} \\\\\n 0 & 1 & 3 & | -3 \\\\\n 0 & 0 & 1 &|55 \\\\\n\\end{pmatrix} \\Longrightarrow"
Answer: "x = 561; y = -168; z = 55."
Comments
Leave a comment