Let V= R^3
W = ( x 1 , x 2 , x 3 ) ∣ x 1 − x 2 = x 3 W={(x_1, x_2, x_3)| x_1-x_2 =x_3} W = ( x 1  , x 2  , x 3  ) ∣ x 1  − x 2  = x 3    . Show that W is a
subspace of V. 
Further,find a basis for W and hence,find the dimension of W.
To show that W is a subspace of V we need to show the following:
let  r = ( r 1 , r 2 , r 3 ) r= (r_1, r_2, r_3) r = ( r 1  , r 2  , r 3  )   , q = ( q 1 , q 2 , q 3 ) ∈ W q=(q_1, q_2,q_3) \isin W q = ( q 1  , q 2  , q 3  ) ∈ W   and α ∈ \alpha\isin α ∈   field
   ⟹    q 1 − q 2 = q 3 \implies q_1-q_2=q_3 ⟹ q 1  − q 2  = q 3    and r 1 − r 2 = r 3 r_1- r_2= r_3 r 1  − r 2  = r 3    
W is not empty for r,q ∈ \isin ∈    W ,   r+q  ∈ \in ∈   W α r ∈ W \alpha r\isin W α r ∈ W   if  ( 0 , 0 , 0 ) ∈ (0, 0,0)\isin ( 0 , 0 , 0 ) ∈   W then 0 − 0 = 0 0-0=0 0 − 0 = 0   
therefore, W is not empty
r + q = ( r 1 , r 2 , r 3 ) + ( q 1 , q 2 , q 3 ) = ( r 1 + q 1 ) , ( r 2 + q 2 ) , ( r 3 + q 3 ) r+q=(r_1, r_2, r_3) +(q_1, q_2,q_3)={ (r_1+q_1), (r_2+q_2),(r_3+q_3)} r + q = ( r 1  , r 2  , r 3  ) + ( q 1  , q 2  , q 3  ) = ( r 1  + q 1  ) , ( r 2  + q 2  ) , ( r 3  + q 3  )   
since ( r 1 + q 1 ) − ( r 2 + q 2 ) = ( r 1 − r 2 ) + ( q 1 − q 2 ) = r 3 + q 3 (r_1+q_1)-(r_2+q_2)=(r_1-r_2) +(q_1-q_2)=  r_3+ q_3 ( r 1  + q 1  ) − ( r 2  + q 2  ) = ( r 1  − r 2  ) + ( q 1  − q 2  ) = r 3  + q 3    
   ⟹    r + q ∈ W \implies r+q\isin W ⟹ r + q ∈ W   
α r = α ( r 1 , r 2 , r 3 ) = r = ( α r 1 , α r 2 , α r 3 ) \alpha r=\alpha (r_1, r_2, r_3)=r= (\alpha r_1, \alpha r_2,\alpha r_3) α r = α ( r 1  , r 2  , r 3  ) = r = ( α r 1  , α r 2  , α r 3  )   
then α r 1 − α r 2 = α ( r 1 − r 2 ) = α r 3 \alpha r_1-\alpha r_2=\alpha(r_1-r_2)=\alpha r_3 α r 1  − α r 2  = α ( r 1  − r 2  ) = α r 3    
   ⟹    α r ∈ W \implies  \alpha r\isin W ⟹ α r ∈ W   
therefore W is a subspace of V
r = ( r 1 r 2 r 3 ) = ( r 1 r 2 r 1 − r 2 ) = r 1 ( 1 0 1 ) + r 2 ( 0 0 − 1 ) r=\begin{pmatrix}
   r_1  \\
   r_2  \\r_3 
\end{pmatrix} =\begin{pmatrix}
   r_1  \\
   r_2  \\r_1-r_2 
\end{pmatrix} = r_1\begin{pmatrix}
   1  \\
  0  \\1
\end{pmatrix}+r_2\begin{pmatrix}
  0  \\
  0  \\-1
\end{pmatrix} r = ⎝ ⎛  r 1  r 2  r 3   ⎠ ⎞  = ⎝ ⎛  r 1  r 2  r 1  − r 2   ⎠ ⎞  = r 1  ⎝ ⎛  1 0 1  ⎠ ⎞  + r 2  ⎝ ⎛  0 0 − 1  ⎠ ⎞    
∴ , [ ( 1 0 1 ) ( 0 0 − 1 ) ] \therefore ,
\begin{bmatrix}
  \begin{pmatrix}
   1  \\
  0  \\1
\end{pmatrix} & \begin{pmatrix}
  0  \\
  0  \\-1 \end{pmatrix}
  
\end{bmatrix} ∴ , ⎣ ⎡  ⎝ ⎛  1 0 1  ⎠ ⎞   ⎝ ⎛  0 0 − 1  ⎠ ⎞   ⎦ ⎤     is a Basis of W
The Dimension of W is 2
                             
Comments