Answer to Question #163675 in Linear Algebra for Nikhil Rawat

Question #163675

Let V= R^3

W={(x1, x2, x3)| x1-x2 =x3}. Show that W is a

subspace of V. Further,find a basis for W and hence,find the dimension of W.


1
Expert's answer
2021-02-25T05:05:56-0500

Let V= R^3

W=(x1,x2,x3)x1x2=x3W={(x_1, x_2, x_3)| x_1-x_2 =x_3} . Show that W is a

subspace of V.

Further,find a basis for W and hence,find the dimension of W.


To show that W is a subspace of V we need to show the following:

let r=(r1,r2,r3)r= (r_1, r_2, r_3) , q=(q1,q2,q3)Wq=(q_1, q_2,q_3) \isin W and α\alpha\isin field

    q1q2=q3\implies q_1-q_2=q_3 and r1r2=r3r_1- r_2= r_3

  1. W is not empty
  2. for r,q \isin W , r+q \in W
  3. αrW\alpha r\isin W

if (0,0,0)(0, 0,0)\isin W then 00=00-0=0

therefore, W is not empty


r+q=(r1,r2,r3)+(q1,q2,q3)=(r1+q1),(r2+q2),(r3+q3)r+q=(r_1, r_2, r_3) +(q_1, q_2,q_3)={ (r_1+q_1), (r_2+q_2),(r_3+q_3)}

since (r1+q1)(r2+q2)=(r1r2)+(q1q2)=r3+q3(r_1+q_1)-(r_2+q_2)=(r_1-r_2) +(q_1-q_2)= r_3+ q_3

    r+qW\implies r+q\isin W


αr=α(r1,r2,r3)=r=(αr1,αr2,αr3)\alpha r=\alpha (r_1, r_2, r_3)=r= (\alpha r_1, \alpha r_2,\alpha r_3)

then αr1αr2=α(r1r2)=αr3\alpha r_1-\alpha r_2=\alpha(r_1-r_2)=\alpha r_3

    αrW\implies \alpha r\isin W

therefore W is a subspace of V


r=(r1r2r3)=(r1r2r1r2)=r1(101)+r2(001)r=\begin{pmatrix} r_1 \\ r_2 \\r_3 \end{pmatrix} =\begin{pmatrix} r_1 \\ r_2 \\r_1-r_2 \end{pmatrix} = r_1\begin{pmatrix} 1 \\ 0 \\1 \end{pmatrix}+r_2\begin{pmatrix} 0 \\ 0 \\-1 \end{pmatrix}


,[(101)(001)]\therefore , \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\1 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\-1 \end{pmatrix} \end{bmatrix} is a Basis of W


The Dimension of W is 2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment