Matrix of transformation:
A=[cosθsinθ−sinθcosθ]
Let
v1=[x1x2] , v2=[y1y2]
Then:
T(v1)=Av1=[cosθsinθ−sinθcosθ][x1x2]
T(v1)=[x1cosθ−x2sinθx1sinθ+x2cosθ]=[x1eiθx2eiθ]
x1cosθ−x2sinθ=x1eiθ=x1cosθ+ix1sinθ
x1sinθ−x2cosθ=x2eiθ=x2cosθ+ix2sinθ
−x2=ix1⟹x1=−x2/i=ix2
x2cosθ=0
v1=[x1−ix1]=x1[1−i]
T(v2)=Av2=[cosθsinθ−sinθcosθ][y1y2]
T(v2)=[y1cosθ−y2sinθy1sinθ+y2cosθ]=[y1e−iθy2e−iθ]
y1cosθ−y2sinθ=y1e−iθ=y1cosθ−iy1sinθ
y1sinθ−y2cosθ=y2e−iθ=y2cosθ−iy2sinθ
y2=iy1
v2=[y1iy1]=y1[1i]
The set {v1,v2} is lineary independent, and dimension of {v1,v2} is the same as dimension of C2 . So {v1,v2} is a basis for C2.
Comments
Leave a comment