Answer to Question #162398 in Linear Algebra for Nikhil

Question #162398

Let 0<θ<2π, θ ≠ π. Consider the linear transformation T: C^2→C^2 given by matrix

[ cosθ -sinθ](w.r.t standard basis)

[ sinθ cosθ]. Find the vector v1, v2 such that Tv1= e^iθv1, Tv2= e^-iθv2. Is {v1,v2} a basis for C^2? Give reason for your answer.


1
Expert's answer
2021-02-28T17:28:03-0500

Matrix of transformation:

A=[cosθsinθsinθcosθ]A=\begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}

Let

v1=[x1x2]v_1=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} , v2=[y1y2]v_2=\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}

Then:

T(v1)=Av1=[cosθsinθsinθcosθ][x1x2]T(v_1)=Av_1=\begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}

T(v1)=[x1cosθx2sinθx1sinθ+x2cosθ]=[x1eiθx2eiθ]T(v_1)=\begin{bmatrix} x_1cos\theta-x_2sin\theta \\ x_1sin\theta+x_2cos\theta \end{bmatrix}=\begin{bmatrix} x_1e^{i\theta} \\ x_2e^{i\theta} \end{bmatrix}


x1cosθx2sinθ=x1eiθ=x1cosθ+ix1sinθx_1cos\theta-x_2sin\theta=x_1e^{i\theta}=x_1cos\theta+ix_1sin\theta

x1sinθx2cosθ=x2eiθ=x2cosθ+ix2sinθx_1sin\theta-x_2cos\theta=x_2e^{i\theta}=x_2cos\theta+ix_2sin\theta


x2=ix1    x1=x2/i=ix2-x_2=ix_1\implies x_1=-x_2/i=ix_2

x2cosθ=0x_2cos\theta=0


v1=[x1ix1]=x1[1i]v_1=\begin{bmatrix} x_1 \\ -ix_1 \end{bmatrix}=x_1\begin{bmatrix} 1 \\ -i \end{bmatrix}


T(v2)=Av2=[cosθsinθsinθcosθ][y1y2]T(v_2)=Av_2=\begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}

T(v2)=[y1cosθy2sinθy1sinθ+y2cosθ]=[y1eiθy2eiθ]T(v_2)=\begin{bmatrix} y_1cos\theta-y_2sin\theta \\ y_1sin\theta+y_2cos\theta \end{bmatrix}=\begin{bmatrix} y_1e^{-i\theta} \\ y_2e^{-i\theta} \end{bmatrix}


y1cosθy2sinθ=y1eiθ=y1cosθiy1sinθy_1cos\theta-y_2sin\theta=y_1e^{-i\theta}=y_1cos\theta-iy_1sin\theta

y1sinθy2cosθ=y2eiθ=y2cosθiy2sinθy_1sin\theta-y_2cos\theta=y_2e^{-i\theta}=y_2cos\theta-iy_2sin\theta


y2=iy1y_2=iy_1


v2=[y1iy1]=y1[1i]v_2=\begin{bmatrix} y_1 \\ iy_1 \end{bmatrix}=y_1\begin{bmatrix} 1 \\ i \end{bmatrix}


The set {v1,v2}\{v_1,v_2\} is lineary independent, and dimension of {v1,v2}\{v_1,v_2\} is the same as dimension of C2C^2 . So {v1,v2}\{v_1,v_2\} is a basis for C2.C^2.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment