Let 0<θ<2π, θ ≠ π. Consider the linear transformation T: C^2→C^2 given by matrix
[ cosθ -sinθ](w.r.t standard basis)
[ sinθ cosθ]. Find the vector v1, v2 such that Tv1= e^iθv1, Tv2= e^-iθv2. Is {v1,v2} a basis for C^2? Give reason for your answer.
Matrix of transformation:
"A=\\begin{bmatrix}\n cos\\theta & -sin\\theta \\\\\n sin\\theta & cos\\theta\n\\end{bmatrix}"
Let
"v_1=\\begin{bmatrix}\n x_1 \\\\\n x_2 \n\\end{bmatrix}" , "v_2=\\begin{bmatrix}\n y_1 \\\\\n y_2 \n\\end{bmatrix}"
Then:
"T(v_1)=Av_1=\\begin{bmatrix}\n cos\\theta & -sin\\theta \\\\\n sin\\theta & cos\\theta\n\\end{bmatrix}\\begin{bmatrix}\n x_1 \\\\\n x_2 \n\\end{bmatrix}"
"T(v_1)=\\begin{bmatrix}\n x_1cos\\theta-x_2sin\\theta \\\\\n x_1sin\\theta+x_2cos\\theta \n\\end{bmatrix}=\\begin{bmatrix}\n x_1e^{i\\theta} \\\\\n x_2e^{i\\theta} \n\\end{bmatrix}"
"x_1cos\\theta-x_2sin\\theta=x_1e^{i\\theta}=x_1cos\\theta+ix_1sin\\theta"
"x_1sin\\theta-x_2cos\\theta=x_2e^{i\\theta}=x_2cos\\theta+ix_2sin\\theta"
"-x_2=ix_1\\implies x_1=-x_2\/i=ix_2"
"x_2cos\\theta=0"
"v_1=\\begin{bmatrix}\n x_1 \\\\\n -ix_1\n\\end{bmatrix}=x_1\\begin{bmatrix}\n 1 \\\\\n -i\n\\end{bmatrix}"
"T(v_2)=Av_2=\\begin{bmatrix}\n cos\\theta & -sin\\theta \\\\\n sin\\theta & cos\\theta\n\\end{bmatrix}\\begin{bmatrix}\n y_1 \\\\\n y_2 \n\\end{bmatrix}"
"T(v_2)=\\begin{bmatrix}\n y_1cos\\theta-y_2sin\\theta \\\\\n y_1sin\\theta+y_2cos\\theta \n\\end{bmatrix}=\\begin{bmatrix}\n y_1e^{-i\\theta} \\\\\n y_2e^{-i\\theta} \n\\end{bmatrix}"
"y_1cos\\theta-y_2sin\\theta=y_1e^{-i\\theta}=y_1cos\\theta-iy_1sin\\theta"
"y_1sin\\theta-y_2cos\\theta=y_2e^{-i\\theta}=y_2cos\\theta-iy_2sin\\theta"
"y_2=iy_1"
"v_2=\\begin{bmatrix}\n y_1 \\\\\n iy_1\n\\end{bmatrix}=y_1\\begin{bmatrix}\n 1 \\\\\n i\n\\end{bmatrix}"
The set "\\{v_1,v_2\\}" is lineary independent, and dimension of "\\{v_1,v_2\\}" is the same as dimension of "C^2" . So "\\{v_1,v_2\\}" is a basis for "C^2."
Comments
Leave a comment