Suppose that a 4 × 4 matrix A has eigenvalues λ1 = 1, λ2 = − 4, λ3 = 6, and λ4 = − 6. Use the following method to find det (A).
If
p(λ) = det (λI − A) = λn + c1λn − 1 + ⋯ + cn
So, on setting λ = 0, we obtain that
det (− A) = cn or det (A) = (− 1)ncn
det (A) = ?
"Solution: ~\\lambda_1=1,~\\lambda_2=-4,~\\lambda_3=6,~\\lambda_4=-6\n\\\\det(\\lambda I-A)=\\lambda^n +c_1\\lambda^{n-1}+c_2 \\lambda^{n-2}+....+c_n\n\\\\Here ~ n=4,\n\\\\ \\therefore ~det(\\lambda I-A)=\\lambda^4 +c_1\\lambda^3+c_2 \\lambda^2+c_3 \\lambda+c_4\n\\\\ For \\lambda=1,\n\\\\det( I-A)=(1)^4 +c_1(1)^3+c_2 (1)^2+c_3 (1)+c_4\n\\\\~~~~~~~~~~~~~~~~~~~=1 +c_1+c_2 +c_3 +c_4.........................................(I) \n\\\\ For \\lambda=-4,\n\\\\det( -4I-A)=(-4)^4 +c_1(-4)^3+c_2 (-4)^2+c_3 (-4)+c_4\n\\\\~~~~~~~~~~~~~~~~~~~=256 -64c_1+16c_2 -4c_3 +c_4.........................................(II) \n\\\\ For \\lambda=6,\n\\\\det( 6I-A)=(6)^4 +c_1(6)^3+c_2 (6)^2+c_3 (6)+c_4\n\\\\~~~~~~~~~~~~~~~~~~~=1296 +216c_1+36c_2 +6c_3 +c_4.........................................(III)\n\\\\ \\\\ For \\lambda=-6,\n\\\\det( -6I-A)=(-6)^4 +c_1(-6)^3+c_2 (-6)^2+c_3 (-6)+c_4\n\\\\~~~~~~~~~~~~~~~~~~~~~~~~~=1296 -216c_1+36c_2 -6c_3 +c_4.........................................(IV)\n\\\\Re-write~ the ~equation ~(I),(II),(III)~and~(IV),\n\\\\c_4+c_1+c_2 +c_3 =-1..........................................................(I)^*\n\\\\c_4-64c_1+16c_2-4c_3=-256..............................................(II)^*\n\\\\c_4+216c_1+36c_2+6c_3=-1296...........................................(III)^*\n\\\\c_4-216c_1+36c_2-6c_3=-1296...........................................(IV)^*\n\\\\Solving~ (I)^*,(II)^*,(III)^*~and~(IV)^*, we~get~,\n\\\\c_4=144,c_1=3,c_2=-40~and~c_3=-108\n\\\\ \\therefore det(\\lambda I-A) ~becomes,\n\\\\det(\\lambda I-A)=\\lambda^4 +3\\lambda^3-40 \\lambda^2-108 \\lambda+144\n\\\\For~ \\lambda=0\n\\\\ det(-A)=c_4=144 ~or~det(A)=(-1)^4 .144=144\n\\\\ \\therefore det(A)=144\n\\\\Note: Their ~are~ several~ methods ~to ~solve~ system ~of ~linear ~equations."
Comments
Leave a comment