Find solution of equation by using the gaussian elimination method.
2x+3y+z=2
-x+2y+2z=1
x-y-2z=-1
The augmented matrix for the set of equations is:
[2312−12211−1−2−1]\begin{bmatrix} 2 & 3 & 1 & 2 \\ -1 & 2 & 2 & 1 \\ 1 & -1 & -2 & -1 \end{bmatrix}⎣⎡2−1132−112−221−1⎦⎤
Rearranging the rows:
[1−1−2−12312−1221]\begin{bmatrix} 1 & -1 & -2 & -1 \\ 2 & 3 & 1 & 2 \\ -1 & 2 & 2 & 1 \end{bmatrix}⎣⎡12−1−132−212−121⎦⎤
Multiply the first row by -2 and add it to the second row:
[1−1−2−10554−1221]\begin{bmatrix} 1 & -1 & -2 & -1 \\ 0 & 5 & 5 & 4 \\ -1 & 2 & 2 & 1 \end{bmatrix}⎣⎡10−1−152−252−141⎦⎤
Add the first row to the third row:
[1−1−2−105540100]\begin{bmatrix} 1 & -1 & -2 & -1 \\ 0 & 5 & 5 & 4 \\ 0 & 1 & 0 & 0 \end{bmatrix}⎣⎡100−151−250−140⎦⎤
The third row translates to:
y=0y=0y=0
Therefore, the second row translates to:
5z=45z=45z=4
z=4/5z=4/5z=4/5
The first row then translates to:
x−2(4/5)=−1x-2(4/5)=-1x−2(4/5)=−1
x−8/5=−1x-8/5=-1x−8/5=−1
x=−1+8/5x=-1+8/5x=−1+8/5
x=3/5x=3/5x=3/5
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments