Suppose T is invertible then show that (T-1)* = (T*)-1
"Solution: ~Let~u\\in V. Since~ T ~ is ~ invertible~ and ~ hence ~surjective, \n\\\\ \\therefore u=Tw~for ~some~ vector ~w.\\\\\n If ~ v \\in V,< (T^{-1})^ * v,Tw>~=~<v,T^{-1}Tw>~=~<v,w> \n\\\\and~ < (T^{-1})^ * v,Tw>~=~<T^*(T^*)^{-1}v,w>~=~<v,w> \n\\\\Since ~ for ~all ~ u,v \\in V, <(T^{-1})^ * v,u>=<(T^*)^{-1}v,u>\n\\\\ \\therefore ~ (T^{-1})^ *=(T^*)^{-1}\n\\\\Hence ~ proved."
Comments
Leave a comment