Question #160286

Suppose T is invertible then show that (T-1)* = (T*)-1

1
Expert's answer
2021-02-04T07:37:39-0500

Solution: Let uV.Since T is invertible and hence surjective,u=Tw for some vector w.If vV,<(T1)v,Tw> = <v,T1Tw> = <v,w>and <(T1)v,Tw> = <T(T)1v,w> = <v,w>Since for all u,vV,<(T1)v,u>=<(T)1v,u> (T1)=(T)1Hence proved.Solution: ~Let~u\in V. Since~ T ~ is ~ invertible~ and ~ hence ~surjective, \\ \therefore u=Tw~for ~some~ vector ~w.\\ If ~ v \in V,< (T^{-1})^ * v,Tw>~=~<v,T^{-1}Tw>~=~<v,w> \\and~ < (T^{-1})^ * v,Tw>~=~<T^*(T^*)^{-1}v,w>~=~<v,w> \\Since ~ for ~all ~ u,v \in V, <(T^{-1})^ * v,u>=<(T^*)^{-1}v,u> \\ \therefore ~ (T^{-1})^ *=(T^*)^{-1} \\Hence ~ proved.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS