Question #160249

Using the Gram-Schmidt prodecure find an orthornornal set of vectors corresponding to the ordered basis B {(1,1,1),(1,1,0),(1,0,0)} of R^3. Also find a basis dual to B.


1
Expert's answer
2021-02-28T06:26:17-0500


Answer


a)

If { v1, v2, v3) is any ordered basis, then according to Gram-Schmidt procedure,


uk=vk- i=1k1\displaystyle\sum_{i=1}^{k-1} proj uj (vk), where proju (v) = u.vu.uu.v \over u.uu.


and the normalized vector is ek= ukux.uxu_k \over \sqrt{u_x.u_x }


Here v1= [111]\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, v2[110]\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} v3[100]\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}



Now u1=v1[111]\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} and e1u1u1.u1u_1 \over \sqrt{u_1.u_1 }= 13​​1 \over \sqrt{3 } ​ ​[111]\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}[111]\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}




u2= v2- u1.v2u1.u1u_1.v_2 \over u_1.u_1u. = [110]\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} - 232 \over 3    [111]\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = [232323]\begin{bmatrix} 2 \over 3 \\ 2 \over 3 \\ 2 \over 3 \end{bmatrix}  



u2.u2= 191 \over 9191 \over 9494 \over 9696 \over 9232 \over 3


e1= 32\sqrt{3} \over \sqrt{2}[131323]\begin{bmatrix} 1 \over 3 \\ 1 \over 3 \\ -2 \over 3 \end{bmatrix}


u3= v3- u1.v3u1.u1u_1.v_3 \over u_1.u_1u1 - u2.v3u2.u2u_2.v_3 \over u_2.u_2u2



u3[100]\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - 131 \over 3 [111]\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - 121 \over 2[131323]\begin{bmatrix} 1 \over 3 \\ 1 \over 3 \\ -2 \over 3 \end{bmatrix}



u1.v3 = 1


u2.v3 = 131 \over 3


u1.u1 = 3



u2.u2 = 232 \over 3



b)


By definition, if B = { u1,u2, ---,uk,} is basis of a vector space, then

B* = { f1,f2, ---,fk,} is dual basis of dual space,


where fi (uj)=dkij , dkij= {1if i=j0if ij\begin{cases} 1 &\text{if } i=j \\ 0 &\text{if } i\not =j \end{cases}



Now given basis is B= {(1,1,1), (1,1,0), (1,0,0)}, then {  u1,u2,u3}


We have (u,y,z) = z (1,1,1)+ (y-z)(1,1,0) + (u-y)(1,0,0)


Now f1(u,y,z) =  z f1 (1,1,1)+ (y-z) f1(1,1,0) + (u-y) f1(1,0,0)

=z+ (y-z).0+ (u-y).0


So  f1(u,y,z) =  z


 f2(u,y,z) =  z  f2 (1,1,1)+ (y-z) f2(1,1,0) + (u-y) f2(1,0,0)

= z.0+ (y-z).1+ (u-y).0


so  f2(u,y,z) = y-z


 f3(u,y,z) =  z   f3 (1,1,1)+ (y-z) f3(1,1,0) + (u-y)  f3(1,0,0)

               = z.0+ (y-z).0+ (u-y).1


so  f3(u,y,z) = u-y


Thus  B* = { f1,f2, ,f3), where  f1(u,y,z) = z, f2(u,y,z) = y-z, f3(u,y,z) = u-y.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS