Using the Gram-Schmidt prodecure find an orthornornal set of vectors corresponding to the ordered basis B {(1,1,1),(1,1,0),(1,0,0)} of R^3. Also find a basis dual to B.
Answer
a)
If { v1, v2, v3) is any ordered basis, then according to Gram-Schmidt procedure,
uk=vk- "\\displaystyle\\sum_{i=1}^{k-1}" proj uj (vk), where proju (v) = "u.v \\over u.u"u.
and the normalized vector is ek= "u_k \\over \\sqrt{u_x.u_x }"
Here v1= "\\begin{bmatrix}\n 1 \\\\\n 1 \\\\\n1\n\\end{bmatrix}", v2= "\\begin{bmatrix}\n 1 \\\\\n 1 \\\\\n0\n\\end{bmatrix}" v3= "\\begin{bmatrix}\n 1 \\\\\n 0 \\\\\n0\n\\end{bmatrix}"
Now u1=v1= "\\begin{bmatrix}\n 1 \\\\\n 1 \\\\\n1\n\\end{bmatrix}" and e1= "u_1 \\over \\sqrt{u_1.u_1 }"= "1 \\over \\sqrt{3 }\n\n\n\u200b\n\n\n\n\u200b""\\begin{bmatrix}\n 1 \\\\\n 1 \\\\\n1\n\\end{bmatrix}""\\begin{bmatrix}\n 1 \\\\\n 1 \\\\\n1\n\\end{bmatrix}"
u2= v2- "u_1.v_2 \\over u_1.u_1"u. = "\\begin{bmatrix}\n 1 \\\\\n 1 \\\\\n0\n\\end{bmatrix}" - "2 \\over 3" "\\begin{bmatrix}\n 1 \\\\\n 1 \\\\\n1\n\\end{bmatrix}" = "\\begin{bmatrix}\n 2 \\over 3 \\\\\n 2 \\over 3 \\\\\n2 \\over 3\n\\end{bmatrix}"
u2.u2= "1 \\over 9" + "1 \\over 9" + "4 \\over 9" = "6 \\over 9" = "2 \\over 3"
e1= "\\sqrt{3} \\over \\sqrt{2}""\\begin{bmatrix}\n 1 \\over 3 \\\\\n 1 \\over 3 \\\\\n-2 \\over 3\n\\end{bmatrix}"
u3= v3- "u_1.v_3 \\over u_1.u_1"u1 - "u_2.v_3 \\over u_2.u_2"u2
u3= "\\begin{bmatrix}\n 1 \\\\\n 0 \\\\\n0\n\\end{bmatrix}" - "1 \\over 3" "\\begin{bmatrix}\n 1 \\\\\n 1 \\\\\n1\n\\end{bmatrix}" - "1 \\over 2""\\begin{bmatrix}\n 1 \\over 3 \\\\\n 1 \\over 3 \\\\\n-2 \\over 3\n\\end{bmatrix}"
u1.v3 = 1
u2.v3 = "1 \\over 3"
u1.u1 = 3
u2.u2 = "2 \\over 3"
b)
By definition, if B = { u1,u2, ---,uk,} is basis of a vector space, then
B* = { f1,f2, ---,fk,} is dual basis of dual space,
where fi (uj)=dkij , dkij= "\\begin{cases}\n 1 &\\text{if } i=j \\\\\n 0 &\\text{if } i\\not =j\n\\end{cases}"
Now given basis is B= {(1,1,1), (1,1,0), (1,0,0)}, then { u1,u2,u3}
We have (u,y,z) = z (1,1,1)+ (y-z)(1,1,0) + (u-y)(1,0,0)
Now f1(u,y,z) = z f1 (1,1,1)+ (y-z) f1(1,1,0) + (u-y) f1(1,0,0)
=z+ (y-z).0+ (u-y).0
So f1(u,y,z) = z
f2(u,y,z) = z f2 (1,1,1)+ (y-z) f2(1,1,0) + (u-y) f2(1,0,0)
= z.0+ (y-z).1+ (u-y).0
so f2(u,y,z) = y-z
f3(u,y,z) = z f3 (1,1,1)+ (y-z) f3(1,1,0) + (u-y) f3(1,0,0)
= z.0+ (y-z).0+ (u-y).1
so f3(u,y,z) = u-y
Thus B* = { f1,f2, ,f3), where f1(u,y,z) = z, f2(u,y,z) = y-z, f3(u,y,z) = u-y.
Comments
Leave a comment