Answer
a)
If { v1 , v2 , v3 ) is any ordered basis, then according to Gram-Schmidt procedure,
uk =vk - ∑ i = 1 k − 1 \displaystyle\sum_{i=1}^{k-1} i = 1 ∑ k − 1 proj uj (vk ), where proju (v) = u . v u . u u.v \over u.u u . u u . v u.
and the normalized vector is ek = u k u x . u x u_k \over \sqrt{u_x.u_x } u x . u x u k
Here v1 = [ 1 1 1 ] \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} ⎣ ⎡ 1 1 1 ⎦ ⎤ , v2 = [ 1 1 0 ] \begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix} ⎣ ⎡ 1 1 0 ⎦ ⎤ v3 = [ 1 0 0 ] \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} ⎣ ⎡ 1 0 0 ⎦ ⎤
Now u1 =v1 = [ 1 1 1 ] \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} ⎣ ⎡ 1 1 1 ⎦ ⎤ and e1 = u 1 u 1 . u 1 u_1 \over \sqrt{u_1.u_1 } u 1 . u 1 u 1 = 1 3 1 \over \sqrt{3 }
3 1 [ 1 1 1 ] \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} ⎣ ⎡ 1 1 1 ⎦ ⎤ [ 1 1 1 ] \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} ⎣ ⎡ 1 1 1 ⎦ ⎤
u2 = v2 - u 1 . v 2 u 1 . u 1 u_1.v_2 \over u_1.u_1 u 1 . u 1 u 1 . v 2 u. = [ 1 1 0 ] \begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix} ⎣ ⎡ 1 1 0 ⎦ ⎤ - 2 3 2 \over 3 3 2 [ 1 1 1 ] \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} ⎣ ⎡ 1 1 1 ⎦ ⎤ = [ 2 3 2 3 2 3 ] \begin{bmatrix}
2 \over 3 \\
2 \over 3 \\
2 \over 3
\end{bmatrix} ⎣ ⎡ 3 2 3 2 3 2 ⎦ ⎤
u2 .u2 = 1 9 1 \over 9 9 1 + 1 9 1 \over 9 9 1 + 4 9 4 \over 9 9 4 = 6 9 6 \over 9 9 6 = 2 3 2 \over 3 3 2
e1 = 3 2 \sqrt{3} \over \sqrt{2} 2 3 [ 1 3 1 3 − 2 3 ] \begin{bmatrix}
1 \over 3 \\
1 \over 3 \\
-2 \over 3
\end{bmatrix} ⎣ ⎡ 3 1 3 1 3 − 2 ⎦ ⎤
u3 = v3 - u 1 . v 3 u 1 . u 1 u_1.v_3 \over u_1.u_1 u 1 . u 1 u 1 . v 3 u1 - u 2 . v 3 u 2 . u 2 u_2.v_3 \over u_2.u_2 u 2 . u 2 u 2 . v 3 u2
u3 = [ 1 0 0 ] \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} ⎣ ⎡ 1 0 0 ⎦ ⎤ - 1 3 1 \over 3 3 1 [ 1 1 1 ] \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} ⎣ ⎡ 1 1 1 ⎦ ⎤ - 1 2 1 \over 2 2 1 [ 1 3 1 3 − 2 3 ] \begin{bmatrix}
1 \over 3 \\
1 \over 3 \\
-2 \over 3
\end{bmatrix} ⎣ ⎡ 3 1 3 1 3 − 2 ⎦ ⎤
u1 .v3 = 1
u2 .v3 = 1 3 1 \over 3 3 1
u1 .u1 = 3
u2 .u2 = 2 3 2 \over 3 3 2
b)
By definition, if B = { u1, u2, ---, uk, } is basis of a vector space, then
B* = { f1, f2, ---, fk, } is dual basis of dual space,
where fi (uj )=dkij , dkij = { 1 if i = j 0 if i ≠ j \begin{cases}
1 &\text{if } i=j \\
0 &\text{if } i\not =j
\end{cases} { 1 0 if i = j if i = j
Now given basis is B= {(1,1,1), (1,1,0), (1,0,0)}, then { u1, u2, u3 }
We have (u,y,z) = z (1,1,1)+ (y-z)(1,1,0) + (u-y)(1,0,0)
Now f1 (u,y,z) = z f1 (1,1,1)+ (y-z) f1 (1,1,0) + (u-y) f1 (1,0,0)
=z+ (y-z).0+ (u-y).0
So f1 (u,y,z) = z
f2 (u,y,z) = z f2 (1,1,1)+ (y-z) f2 (1,1,0) + (u-y) f2 (1,0,0)
= z.0+ (y-z).1+ (u-y).0
so f2 (u,y,z) = y-z
f3 (u,y,z) = z f3 (1,1,1)+ (y-z) f3 (1,1,0) + (u-y) f3 (1,0,0)
= z.0+ (y-z).0+ (u-y).1
so f3 (u,y,z) = u-y
Thus B* = { f1, f2, , f3 ), where f1 (u,y,z) = z, f2 (u,y,z) = y-z, f3 (u,y,z) = u-y.
Comments