Question #160372

 Consider the basis S = {v1, v2} for R2, where v1=(1,1) and v2=(2,3)and 

T: R2πŸ‘ͺP2 be the linear transformation such that T (v1)= 2-3x+x2 and T(v2)=1-x2. Find the formula for T and use that to find T(a, b).




1
Expert's answer
2021-02-03T03:53:36-0500

Let u1=(1,0)u_1=(1,0) and u2=(0,1)u_2=(0,1). Then

T(v1)=2βˆ’3x+x2T(v_1) = 2-3x+x^2

T(v2)=1βˆ’x2T(v_2)=1-x^2

T(u2)=T(v2βˆ’2v1)=T(v2)βˆ’2T(v1)=(1βˆ’x2)βˆ’2(2βˆ’3x+x2)=x2+6xβˆ’3T(u_2) = T(v_2-2v_1) = T(v_2)-2T(v_1) =(1-x^2) - 2(2-3x+x^2) = x^2 + 6x -3

T(u1)=T(v1βˆ’u2)=T(v1)βˆ’T(u2)=(2βˆ’3x+x2)βˆ’(x2+6xβˆ’3)=5βˆ’9xT(u_1) = T(v_1-u_2) = T(v_1) - T(u_2) = (2-3x+x^2)-(x^2 + 6x -3) = 5-9x

T(a,b)=T(au1+bu2)=aT(u1)+bT(u2)=a(5βˆ’9x)+b(x2+6xβˆ’3)=bx2+(6bβˆ’9a)x+(5aβˆ’3b)T(a,b) = T(au_1+bu_2) = aT(u_1)+bT(u_2) = a(5-9x) + b(x^2 + 6x -3) = bx^2 + (6b-9a)x +(5a-3b)

Answer. T(a,b)=bx2+(6bβˆ’9a)x+(5aβˆ’3b)T(a,b) = bx^2 + (6b-9a)x +(5a-3b)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS