Answer to Question #162363 in Linear Algebra for Nikhil

Question #162363

Complete {(2,0,3)} to form an orthogonal basis of R^3


1
Expert's answer
2021-02-24T12:24:08-0500

Solution:

According to the Gram-Schmidt process,

uk=vkj=1k1projuj(vk)\mathbf{u}_{\mathbf{k}}=\mathbf{v}_{\mathbf{k}}-\sum_{j=1}^{k-1} \operatorname{proj}_{\mathbf{u}_{\mathbf{j}}}\left(\mathbf{v}_{\mathbf{k}}\right) , where

proju(v)=uvuuu\operatorname{proj}_{\mathbf{u}}(\mathbf{v})=\dfrac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}

The normalized vector is 

ek=ukukuk\mathbf{e}_{\mathbf{k}}=\dfrac{\mathbf{u}_{\mathbf{k}}}{\sqrt{\mathbf{u}_{\mathbf{k}} \cdot \mathbf{u}_{\mathbf{k}}}}

Here \cdot is the dot product operator

u1=v1=[203]\mathbf{u}_{\mathbf{1}}=\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]

Now, e1=u1u1u1\mathbf{e}_{1}=\dfrac{\mathbf{u}_{1}}{\sqrt{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}}

u1u1=22+02+32=4+9=13\sqrt{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}=\sqrt{2^2+0^2+3^2}=\sqrt{4+9}=\sqrt{13}

So, e1=u1u1u1=[21313031313]\mathbf{e}_{1}=\dfrac{\mathbf{u}_{1}}{\sqrt{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}}=\left[\begin{array}{c}\dfrac{2 \sqrt{13}}{13} \\ 0 \\ \dfrac{3 \sqrt{13}}{13}\end{array}\right]

So, the required set of orthonormal vectors is e1=[21313031313]\mathbf{e}_{1}=\left[\begin{array}{c}\dfrac{2 \sqrt{13}}{13} \\ 0 \\ \dfrac{3 \sqrt{13}}{13}\end{array}\right]



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment