Solution:
According to the Gram-Schmidt process,
u k = v k − ∑ j = 1 k − 1 proj u j ( v k ) \mathbf{u}_{\mathbf{k}}=\mathbf{v}_{\mathbf{k}}-\sum_{j=1}^{k-1} \operatorname{proj}_{\mathbf{u}_{\mathbf{j}}}\left(\mathbf{v}_{\mathbf{k}}\right) u k = v k − ∑ j = 1 k − 1 proj u j ( v k ) , where
proj u ( v ) = u ⋅ v u ⋅ u u \operatorname{proj}_{\mathbf{u}}(\mathbf{v})=\dfrac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} proj u ( v ) = u ⋅ u u ⋅ v u
The normalized vector is
e k = u k u k ⋅ u k \mathbf{e}_{\mathbf{k}}=\dfrac{\mathbf{u}_{\mathbf{k}}}{\sqrt{\mathbf{u}_{\mathbf{k}} \cdot \mathbf{u}_{\mathbf{k}}}} e k = u k ⋅ u k u k
Here ⋅ \cdot ⋅ is the dot product operator
u 1 = v 1 = [ 2 0 3 ] \mathbf{u}_{\mathbf{1}}=\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right] u 1 = v 1 = ⎣ ⎡ 2 0 3 ⎦ ⎤
Now, e 1 = u 1 u 1 ⋅ u 1 \mathbf{e}_{1}=\dfrac{\mathbf{u}_{1}}{\sqrt{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}} e 1 = u 1 ⋅ u 1 u 1
u 1 ⋅ u 1 = 2 2 + 0 2 + 3 2 = 4 + 9 = 13 \sqrt{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}=\sqrt{2^2+0^2+3^2}=\sqrt{4+9}=\sqrt{13} u 1 ⋅ u 1 = 2 2 + 0 2 + 3 2 = 4 + 9 = 13
So, e 1 = u 1 u 1 ⋅ u 1 = [ 2 13 13 0 3 13 13 ] \mathbf{e}_{1}=\dfrac{\mathbf{u}_{1}}{\sqrt{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}}=\left[\begin{array}{c}\dfrac{2 \sqrt{13}}{13} \\ 0 \\ \dfrac{3 \sqrt{13}}{13}\end{array}\right] e 1 = u 1 ⋅ u 1 u 1 = ⎣ ⎡ 13 2 13 0 13 3 13 ⎦ ⎤
So, the required set of orthonormal vectors is e 1 = [ 2 13 13 0 3 13 13 ] \mathbf{e}_{1}=\left[\begin{array}{c}\dfrac{2 \sqrt{13}}{13} \\ 0 \\ \dfrac{3 \sqrt{13}}{13}\end{array}\right] e 1 = ⎣ ⎡ 13 2 13 0 13 3 13 ⎦ ⎤
Comments