Solution:
According to the Gram-Schmidt process,
uk=vk−∑j=1k−1projuj(vk) , where
proju(v)=u⋅uu⋅vu
The normalized vector is
ek=uk⋅ukuk
Here ⋅ is the dot product operator
u1=v1=⎣⎡203⎦⎤
Now, e1=u1⋅u1u1
u1⋅u1=22+02+32=4+9=13
So, e1=u1⋅u1u1=⎣⎡13213013313⎦⎤
So, the required set of orthonormal vectors is e1=⎣⎡13213013313⎦⎤
Comments
Leave a comment