Complete {(2,0,3)} to form an orthogonal basis of R^3
Solution:
According to the Gram-Schmidt process,
"\\mathbf{u}_{\\mathbf{k}}=\\mathbf{v}_{\\mathbf{k}}-\\sum_{j=1}^{k-1} \\operatorname{proj}_{\\mathbf{u}_{\\mathbf{j}}}\\left(\\mathbf{v}_{\\mathbf{k}}\\right)" , where
"\\operatorname{proj}_{\\mathbf{u}}(\\mathbf{v})=\\dfrac{\\mathbf{u} \\cdot \\mathbf{v}}{\\mathbf{u} \\cdot \\mathbf{u}} \\mathbf{u}"
The normalized vector is
"\\mathbf{e}_{\\mathbf{k}}=\\dfrac{\\mathbf{u}_{\\mathbf{k}}}{\\sqrt{\\mathbf{u}_{\\mathbf{k}} \\cdot \\mathbf{u}_{\\mathbf{k}}}}"
Here "\\cdot" is the dot product operator
"\\mathbf{u}_{\\mathbf{1}}=\\mathbf{v}_{\\mathbf{1}}=\\left[\\begin{array}{l}2 \\\\ 0 \\\\ 3\\end{array}\\right]"
Now, "\\mathbf{e}_{1}=\\dfrac{\\mathbf{u}_{1}}{\\sqrt{\\mathbf{u}_{1} \\cdot \\mathbf{u}_{1}}}"
"\\sqrt{\\mathbf{u}_{1} \\cdot \\mathbf{u}_{1}}=\\sqrt{2^2+0^2+3^2}=\\sqrt{4+9}=\\sqrt{13}"
So, "\\mathbf{e}_{1}=\\dfrac{\\mathbf{u}_{1}}{\\sqrt{\\mathbf{u}_{1} \\cdot \\mathbf{u}_{1}}}=\\left[\\begin{array}{c}\\dfrac{2 \\sqrt{13}}{13} \\\\ 0 \\\\ \\dfrac{3 \\sqrt{13}}{13}\\end{array}\\right]"
So, the required set of orthonormal vectors is "\\mathbf{e}_{1}=\\left[\\begin{array}{c}\\dfrac{2 \\sqrt{13}}{13} \\\\ 0 \\\\ \\dfrac{3 \\sqrt{13}}{13}\\end{array}\\right]"
Comments
Leave a comment