Question #162389

Define: R^3→R^3 by

T(x,y,z)=(x-y+z,x+y,y+z)

Let v1= (1,1,1), v2= (0,1,1), v3= (0,0,1). Find a matrix of T with respect to the basis {v1,v2,v3}. Futher check T is invertible or not.




1
Expert's answer
2021-02-23T10:16:40-0500

The map TT with respect to the standard basis e1=(1,0,0)e_1=(1,0,0), e2=(0,1,0)e_2=(0,1,0), e3=(0,0,1)e_3=(0,0,1) can be presented in the form: (xy+zx+yy+z)=(111110011)(xyz)\left(\begin{matrix}x-y+z\\x+y\\y+z\end{matrix}\right)=\left(\begin{matrix}1&-1&1\\1 &1&0\\0&1&1\end{matrix}\right)\left(\begin{matrix}x\\y\\z\end{matrix}\right). In order to find a matrix with respect to the basis v1v_1,v2v_2 and v3v_3 , we need to find such matrix TT' that xv1+yv2+zv3=T(xv1+yv2+zv3)x'v_1+y'v_2+z'v_3=T'(xv_1+yv_2+zv_3). We have: xv1+yv2+zv3=(x,x+y,x+y+z)xv_1+yv_2+zv_3=(x,x+y,x+y+z)^{\top} In case we act on the vector with the map TT we will get: (x(x+y)+x+y+z,2x+y,2x+2y+z)=(x+z,2x+y,2x+2y+z)(x-(x+y)+x+y+z,2x+y,2x+2y+z)=(x+z,2x+y,2x+2y+z). It has the following representation in basis v1,v2,v3:v_1,v_2,v_3: (x+z,2x+y,2x+2y+z)=(x+z)v1+(2x+y(x+z))v2+(2x+2y+z(x+z)(x+yz))v3=(x+z)v1+(x+yz)v2+(y+z)v3(x+z,2x+y,2x+2y+z)=(x+z)v_1+(2x+y-(x+z))v_2+(2x+2y+z-(x+z)-(x+y-z))v_3=(x+z)v_1+(x+y-z)v_2+(y+z)v_3

The respective matrix has the form: T=(101111011)T'=\left(\begin{matrix}1&0&1\\1&1&-1\\0&1&1\end{matrix}\right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS