To determine the eigenvalues and eigenvectors of the following matrix :
2 -2 0
P = -2 1 -2
0 -2 0
"P=\\left(\\begin{array}{rrr}2&-2&0\\\\-2&1&-2\\\\0&-2&0\\end{array}\\right)"
Eigenvalues "\\lambda_1", "\\lambda_2", "\\lambda_3" are the roots of the characteristic polynomial of "P" .
Obtain the characteristic polynomial taking the determinant
"\\left|\\begin{array}{rrr}2-\\lambda&-2&0\\\\-2&1-\\lambda&-2\\\\0&-2&-\\lambda\\end{array}\\right|="
"(2-\\lambda)(1-\\lambda)(-\\lambda)+(-2)\\cdot(-2)\\cdot0+" "0\\cdot(-2)\\cdot(-2)-"
"0\\cdot(1-\\lambda)\\cdot0-(-2)\\cdot(-2)\\cdot(-\\lambda)-" "(2-\\lambda)\\cdot(-2)\\cdot(-2)="
"(2-\\lambda-2\\lambda+\\lambda^2)(-\\lambda)+0+0-0+4\\lambda-(2-\\lambda)\\cdot4="
"(2-3\\lambda+\\lambda^2)(-\\lambda)+4\\lambda-8+4\\lambda="
"-2\\lambda+3\\lambda^2-\\lambda^3+8\\lambda-8="
"-\\lambda^3+3\\lambda^2+6\\lambda-8"
Find the roots factoring the polynomial
"-(\\lambda^3-3\\lambda^2-6\\lambda+8)="
"-(\\lambda^3+8-3\\lambda^2-6\\lambda)="
"-((\\lambda^3+8)-(3\\lambda^2+6\\lambda))="
"-((\\lambda^3+2^3)-3\\lambda(\\lambda+2))="
"-((\\lambda+2)(\\lambda^2-2\\lambda+2^2)-3\\lambda(\\lambda+2))="
"-((\\lambda+2)(\\lambda^2-2\\lambda+4)-3\\lambda(\\lambda+2))="
"-(\\lambda+2)(\\lambda^2-2\\lambda+4-3\\lambda)="
"-(\\lambda+2)(\\lambda^2-5\\lambda+4)="
"-(\\lambda+2)(\\lambda^2-4\\lambda-\\lambda+4)="
"-(\\lambda+2)((\\lambda^2-4\\lambda)-(\\lambda-4))="
"-(\\lambda+2)(\\lambda(\\lambda-4)-(\\lambda-4))="
"-(\\lambda+2)(\\lambda-1)(\\lambda-4)"
So the roots of polynomial are
"\\lambda_1=-2",
"\\lambda_2=1",
"\\lambda_3=4".
Find eigenvectors solving the homogeneous system substituting "\\lambda" by "-2", "1", "4"
"\\left\\{\\begin{array}{rrrr}(2-\\lambda)x_1&-2x_2&&=0\\\\-2x_1&+(1-\\lambda)x_2&-2x_3&=0\\\\&-2x_2&-\\lambda x_3&=0\\end{array}\\right."
"\\lambda=\\lambda_1=-2"
"\\left\\{\\begin{array}{rrrr}4x_1&-2x_2&&=0\\\\-2x_1&+3x_2&-2x_3&=0\\\\&-2x_2&+2x_3&=0\\end{array}\\right."
Use Gaussian elimination modifying the augmented matrix
"\\left(\\begin{array}{rrr}4&-2&0\\\\-2&3&-2\\\\0&-2&2\\end{array}\\right|\\left.\\begin{array}{r}0\\\\0\\\\0\\end{array}\\right)\\sim" "L_2+\\frac12L_1\\to L_2\\sim"
"\\left(\\begin{array}{lll}4&-2&0\\\\-2+\\frac12\\cdot4&3+\\frac12\\cdot(-2)&-2+\\frac12\\cdot0\\\\0&-2&2\\end{array}\\right|\\left.\\begin{array}{r}0\\\\0\\\\0\\end{array}\\right)="
"\\left(\\begin{array}{rrr}4&-2&0\\\\0&2&-2\\\\0&-2&2\\end{array}\\right|\\left.\\begin{array}{r}0\\\\0\\\\0\\end{array}\\right)\\sim" "L_3+L_2\\to L_3\\sim"
"\\left(\\begin{array}{rrr}4&-2&0\\\\0&2&-2\\\\0+0&-2+2&2-2\\end{array}\\right|\\left.\\begin{array}{r}0\\\\0\\\\0\\end{array}\\right)="
"\\left(\\begin{array}{rrr}4&-2&0\\\\0&2&-2\\\\0&0&0\\end{array}\\right|\\left.\\begin{array}{r}0\\\\0\\\\0\\end{array}\\right)".
System represented as the matryx is
"\\left\\{\\begin{array}{rrrr}4x_1&-2x_2&&=0\\\\&+2x_2&-2x_3&=0\\end{array}\\right."
Let "x_3" be free while "x_1" and "x_2" be dependent on "x_3" . Then
"\\left\\{\\begin{array}{rrrr}4x_1&&&=2x_2\\\\&2x_2&&=2x_3\\end{array}\\right.\\Rightarrow" "\\left\\{\\begin{array}{rrrr}4x_1&&&=2x_3\\\\&x_2&&=x_3\\end{array}\\right.\\Rightarrow" "\\left\\{\\begin{array}{rrrr}x_1&&&=\\frac12x_3\\\\&x_2&&=x_3\\end{array}\\right."
Thus, the eigenvector corresponding to the eigenvalue "\\lambda_1=-2" is
"\\bold{v}_1=\\left(\\begin{array}{r}x_1\\\\x_2\\\\x_3\\end{array}\\right)=" "\\left(\\begin{array}{r}\\frac12x_3\\\\x_3\\\\x_3\\end{array}\\right)".
Here "x_3" is allowed to take any value. In particular, if "x_3=1"
"\\bold{v}_1=\\left(\\begin{array}{r}\\frac12\\\\1\\\\1\\end{array}\\right)".
"\\lambda=\\lambda_2=1"
"\\left\\{\\begin{array}{rrrr}x_1&-2x_2&&=0\\\\-2x_1&&-2x_3&=0\\\\&-2x_2&-x_3&=0\\end{array}\\right."
Use Gaussian elimination modifying the augmented matrix
"\\left(\\begin{array}{rrr}1&-2&0\\\\-2&0&-2\\\\0&-2&-1\\end{array}\\right|\\left.\\begin{array}{r}0\\\\0\\\\0\\end{array}\\right)\\sim" "L_2+2L_1\\to L_2\\sim"
"\\left(\\begin{array}{lll}1&-2&0\\\\-2+2\\cdot1&0+2\\cdot(-2)&-2+\n2\\cdot0\\\\0&-2&-1\\end{array}\\right|\\left.\\begin{array}{r}0\\\\0\\\\0\\end{array}\\right)="
"\\left(\\begin{array}{rrr}1&-2&0\\\\0&-4&-2\\\\0&-2&-1\\end{array}\\right|\\left.\\begin{array}{r}0\\\\0\\\\0\\end{array}\\right)\\sim" "L_3-\\frac12L_2\\to L_3\\sim"
"\\left(\\begin{array}{lll}1&-2&0\\\\0&-4&-2\\\\0-\\frac12\\cdot0&-2-\\frac12\\cdot(-4)&-1-\\frac12\\cdot(-2)\\end{array}\\right|\\left.\\begin{array}{r}0\\\\0\\\\0\\end{array}\\right)="
"\\left(\\begin{array}{rrr}1&-2&0\\\\0&-4&-2\\\\0&0&0\\end{array}\\right|\\left.\\begin{array}{r}0\\\\0\\\\0\\end{array}\\right)"
System represented as the matryx is
"\\left\\{\\begin{array}{rrrr}x_1&-2x_2&&=0\\\\&-4x_2&-2x_3&=0\\end{array}\\right."
Let "x_3" be free while "x_1" and "x_2" be dependent on "x_3" . Then
"\\left\\{\\begin{array}{rrrr}x_1&&&=2x_2\\\\&-4x_2&&=2x_3\\end{array}\\right.\\Rightarrow" "\\left\\{\\begin{array}{rrrl}x_1&&&=2\\left(-\\frac12x_3\\right)\\\\&x_2&&=-\\frac12x_3\\end{array}\\right.\\Rightarrow" "\\left\\{\\begin{array}{rrrl}x_1&&&=-x_3\\\\&x_2&&=-\\frac12x_3\\end{array}\\right."
Thus, the eigenvector corresponding to the eigenvalue "\\lambda_2=1" is
"\\bold{v}_2=\\left(\\begin{array}{r}x_1\\\\x_2\\\\x_3\\end{array}\\right)=" "\\left(\\begin{array}{r}-x_3\\\\-\\frac12x_3\\\\x_3\\end{array}\\right)".
Here "x_3" is allowed to take any value. In particular, if "x_3=1"
"\\bold{v}_2=\\left(\\begin{array}{r}-1\\\\-\\frac12\\\\1\\end{array}\\right)".
"\\lambda=\\lambda_3=4"
"\\left\\{\\begin{array}{rrrr}-2x_1&-2x_2&&=0\\\\-2x_1&-3x_2&-2x_3&=0\\\\&-2x_2&-4x_3&=0\\end{array}\\right."
Use Gaussian elimination modifying the augmented matrix
"\\left(\\begin{array}{rrr}-2&-2&0\\\\-2&-3&-2\\\\0&-2&-4\\end{array}\\right|\\left.\\begin{array}{r}0\\\\0\\\\0\\end{array}\\right)\\sim" "L_2-L_1\\to L_2\\sim"
"\\left(\\begin{array}{lll}-2&-2&0\\\\-2-(-2)&-3-(-2)&-2-0\\\\0&-2&-4\\end{array}\\right|\\left.\\begin{array}{r}0\\\\0\\\\0\\end{array}\\right)="
"\\left(\\begin{array}{rrr}-2&-2&0\\\\0&-1&-2\\\\0&-2&-4\\end{array}\\right|\\left.\\begin{array}{r}0\\\\0\\\\0\\end{array}\\right)\\sim" "L_3-2L_2\\to L_3\\sim"
"\\left(\\begin{array}{lll}-2&-2&0\\\\0&-1&-2\\\\0-2\\cdot0&-2-2\\cdot(-1)&-4-2\\cdot(-2)\\end{array}\\right|\\left.\\begin{array}{r}0\\\\0\\\\0\\end{array}\\right)="
"\\left(\\begin{array}{rrr}-2&-2&0\\\\0&-1&-2\\\\0&0&0\\end{array}\\right|\\left.\\begin{array}{r}0\\\\0\\\\0\\end{array}\\right)" .
System represented as the matryx is
"\\left\\{\\begin{array}{rrrr}-2x_1&-2x_2&&=0\\\\&-x_2&-2x_3&=0\\end{array}\\right."
Let "x_3" be free while "x_1" and "x_2" be dependent on "x_3" . Then
"\\left\\{\\begin{array}{rrrr}-2x_1&&&=2x_2\\\\&-x_2&&=2x_3\\end{array}\\right.\\Rightarrow" "\\left\\{\\begin{array}{rrrl}x_1&&&=-x_2\\\\&x_2&&=-2x_3\\end{array}\\right.\\Rightarrow" "\\left\\{\\begin{array}{rrrl}x_1&&&=2x_3\\\\&x_2&&=-2x_3\\end{array}\\right."
Thus, the eigenvector corresponding to the eigenvalue "\\lambda_2=1" is
"\\bold{v}_3=\\left(\\begin{array}{r}x_1\\\\x_2\\\\x_3\\end{array}\\right)=" "\\left(\\begin{array}{r}2x_3\\\\-2x_3\\\\x_3\\end{array}\\right)".
Here "x_3" is allowed to take any value. In particular, if "x_3=1"
"\\bold{v}_3=\\left(\\begin{array}{r}2\\\\-2\\\\1\\end{array}\\right)".
Answer:
Eigenvalues
"\\lambda_1=-2", "\\lambda_2=1", "\\lambda_3=4".
Eigenvectors
"\\bold{v}_1=\\left(\\begin{array}{r}\\frac12\\\\1\\\\1\\end{array}\\right)t_1", "\\bold{v}_2=\\left(\\begin{array}{r}-1\\\\-\\frac12\\\\1\\end{array}\\right)t_2", "\\bold{v}_3=\\left(\\begin{array}{r}2\\\\-2\\\\1\\end{array}\\right)t_3",
where factors "t_1" , "t_2" , "t_3" may take any value.
Comments
Leave a comment