P = ( 2 − 2 0 − 2 1 − 2 0 − 2 0 ) P=\left(\begin{array}{rrr}2&-2&0\\-2&1&-2\\0&-2&0\end{array}\right) P = ⎝ ⎛ 2 − 2 0 − 2 1 − 2 0 − 2 0 ⎠ ⎞
Eigenvalues λ 1 \lambda_1 λ 1 , λ 2 \lambda_2 λ 2 , λ 3 \lambda_3 λ 3 are the roots of the characteristic polynomial of P P P .
Obtain the characteristic polynomial taking the determinant
∣ 2 − λ − 2 0 − 2 1 − λ − 2 0 − 2 − λ ∣ = \left|\begin{array}{rrr}2-\lambda&-2&0\\-2&1-\lambda&-2\\0&-2&-\lambda\end{array}\right|= ∣ ∣ 2 − λ − 2 0 − 2 1 − λ − 2 0 − 2 − λ ∣ ∣ =
( 2 − λ ) ( 1 − λ ) ( − λ ) + ( − 2 ) ⋅ ( − 2 ) ⋅ 0 + (2-\lambda)(1-\lambda)(-\lambda)+(-2)\cdot(-2)\cdot0+ ( 2 − λ ) ( 1 − λ ) ( − λ ) + ( − 2 ) ⋅ ( − 2 ) ⋅ 0 + 0 ⋅ ( − 2 ) ⋅ ( − 2 ) − 0\cdot(-2)\cdot(-2)- 0 ⋅ ( − 2 ) ⋅ ( − 2 ) −
0 ⋅ ( 1 − λ ) ⋅ 0 − ( − 2 ) ⋅ ( − 2 ) ⋅ ( − λ ) − 0\cdot(1-\lambda)\cdot0-(-2)\cdot(-2)\cdot(-\lambda)- 0 ⋅ ( 1 − λ ) ⋅ 0 − ( − 2 ) ⋅ ( − 2 ) ⋅ ( − λ ) − ( 2 − λ ) ⋅ ( − 2 ) ⋅ ( − 2 ) = (2-\lambda)\cdot(-2)\cdot(-2)= ( 2 − λ ) ⋅ ( − 2 ) ⋅ ( − 2 ) =
( 2 − λ − 2 λ + λ 2 ) ( − λ ) + 0 + 0 − 0 + 4 λ − ( 2 − λ ) ⋅ 4 = (2-\lambda-2\lambda+\lambda^2)(-\lambda)+0+0-0+4\lambda-(2-\lambda)\cdot4= ( 2 − λ − 2 λ + λ 2 ) ( − λ ) + 0 + 0 − 0 + 4 λ − ( 2 − λ ) ⋅ 4 =
( 2 − 3 λ + λ 2 ) ( − λ ) + 4 λ − 8 + 4 λ = (2-3\lambda+\lambda^2)(-\lambda)+4\lambda-8+4\lambda= ( 2 − 3 λ + λ 2 ) ( − λ ) + 4 λ − 8 + 4 λ =
− 2 λ + 3 λ 2 − λ 3 + 8 λ − 8 = -2\lambda+3\lambda^2-\lambda^3+8\lambda-8= − 2 λ + 3 λ 2 − λ 3 + 8 λ − 8 =
− λ 3 + 3 λ 2 + 6 λ − 8 -\lambda^3+3\lambda^2+6\lambda-8 − λ 3 + 3 λ 2 + 6 λ − 8
Find the roots factoring the polynomial
− ( λ 3 − 3 λ 2 − 6 λ + 8 ) = -(\lambda^3-3\lambda^2-6\lambda+8)= − ( λ 3 − 3 λ 2 − 6 λ + 8 ) =
− ( λ 3 + 8 − 3 λ 2 − 6 λ ) = -(\lambda^3+8-3\lambda^2-6\lambda)= − ( λ 3 + 8 − 3 λ 2 − 6 λ ) =
− ( ( λ 3 + 8 ) − ( 3 λ 2 + 6 λ ) ) = -((\lambda^3+8)-(3\lambda^2+6\lambda))= − (( λ 3 + 8 ) − ( 3 λ 2 + 6 λ )) =
− ( ( λ 3 + 2 3 ) − 3 λ ( λ + 2 ) ) = -((\lambda^3+2^3)-3\lambda(\lambda+2))= − (( λ 3 + 2 3 ) − 3 λ ( λ + 2 )) =
− ( ( λ + 2 ) ( λ 2 − 2 λ + 2 2 ) − 3 λ ( λ + 2 ) ) = -((\lambda+2)(\lambda^2-2\lambda+2^2)-3\lambda(\lambda+2))= − (( λ + 2 ) ( λ 2 − 2 λ + 2 2 ) − 3 λ ( λ + 2 )) =
− ( ( λ + 2 ) ( λ 2 − 2 λ + 4 ) − 3 λ ( λ + 2 ) ) = -((\lambda+2)(\lambda^2-2\lambda+4)-3\lambda(\lambda+2))= − (( λ + 2 ) ( λ 2 − 2 λ + 4 ) − 3 λ ( λ + 2 )) =
− ( λ + 2 ) ( λ 2 − 2 λ + 4 − 3 λ ) = -(\lambda+2)(\lambda^2-2\lambda+4-3\lambda)= − ( λ + 2 ) ( λ 2 − 2 λ + 4 − 3 λ ) =
− ( λ + 2 ) ( λ 2 − 5 λ + 4 ) = -(\lambda+2)(\lambda^2-5\lambda+4)= − ( λ + 2 ) ( λ 2 − 5 λ + 4 ) =
− ( λ + 2 ) ( λ 2 − 4 λ − λ + 4 ) = -(\lambda+2)(\lambda^2-4\lambda-\lambda+4)= − ( λ + 2 ) ( λ 2 − 4 λ − λ + 4 ) =
− ( λ + 2 ) ( ( λ 2 − 4 λ ) − ( λ − 4 ) ) = -(\lambda+2)((\lambda^2-4\lambda)-(\lambda-4))= − ( λ + 2 ) (( λ 2 − 4 λ ) − ( λ − 4 )) =
− ( λ + 2 ) ( λ ( λ − 4 ) − ( λ − 4 ) ) = -(\lambda+2)(\lambda(\lambda-4)-(\lambda-4))= − ( λ + 2 ) ( λ ( λ − 4 ) − ( λ − 4 )) =
− ( λ + 2 ) ( λ − 1 ) ( λ − 4 ) -(\lambda+2)(\lambda-1)(\lambda-4) − ( λ + 2 ) ( λ − 1 ) ( λ − 4 )
So the roots of polynomial are
λ 1 = − 2 \lambda_1=-2 λ 1 = − 2 ,
λ 2 = 1 \lambda_2=1 λ 2 = 1 ,
λ 3 = 4 \lambda_3=4 λ 3 = 4 .
Find eigenvectors solving the homogeneous system substituting λ \lambda λ by − 2 -2 − 2 , 1 1 1 , 4 4 4
{ ( 2 − λ ) x 1 − 2 x 2 = 0 − 2 x 1 + ( 1 − λ ) x 2 − 2 x 3 = 0 − 2 x 2 − λ x 3 = 0 \left\{\begin{array}{rrrr}(2-\lambda)x_1&-2x_2&&=0\\-2x_1&+(1-\lambda)x_2&-2x_3&=0\\&-2x_2&-\lambda x_3&=0\end{array}\right. ⎩ ⎨ ⎧ ( 2 − λ ) x 1 − 2 x 1 − 2 x 2 + ( 1 − λ ) x 2 − 2 x 2 − 2 x 3 − λ x 3 = 0 = 0 = 0
λ = λ 1 = − 2 \lambda=\lambda_1=-2 λ = λ 1 = − 2
{ 4 x 1 − 2 x 2 = 0 − 2 x 1 + 3 x 2 − 2 x 3 = 0 − 2 x 2 + 2 x 3 = 0 \left\{\begin{array}{rrrr}4x_1&-2x_2&&=0\\-2x_1&+3x_2&-2x_3&=0\\&-2x_2&+2x_3&=0\end{array}\right. ⎩ ⎨ ⎧ 4 x 1 − 2 x 1 − 2 x 2 + 3 x 2 − 2 x 2 − 2 x 3 + 2 x 3 = 0 = 0 = 0
Use Gaussian elimination modifying the augmented matrix
( 4 − 2 0 − 2 3 − 2 0 − 2 2 ∣ 0 0 0 ) ∼ \left(\begin{array}{rrr}4&-2&0\\-2&3&-2\\0&-2&2\end{array}\right|\left.\begin{array}{r}0\\0\\0\end{array}\right)\sim ⎝ ⎛ 4 − 2 0 − 2 3 − 2 0 − 2 2 ∣ ∣ 0 0 0 ⎠ ⎞ ∼ L 2 + 1 2 L 1 → L 2 ∼ L_2+\frac12L_1\to L_2\sim L 2 + 2 1 L 1 → L 2 ∼
( 4 − 2 0 − 2 + 1 2 ⋅ 4 3 + 1 2 ⋅ ( − 2 ) − 2 + 1 2 ⋅ 0 0 − 2 2 ∣ 0 0 0 ) = \left(\begin{array}{lll}4&-2&0\\-2+\frac12\cdot4&3+\frac12\cdot(-2)&-2+\frac12\cdot0\\0&-2&2\end{array}\right|\left.\begin{array}{r}0\\0\\0\end{array}\right)= ⎝ ⎛ 4 − 2 + 2 1 ⋅ 4 0 − 2 3 + 2 1 ⋅ ( − 2 ) − 2 0 − 2 + 2 1 ⋅ 0 2 ∣ ∣ 0 0 0 ⎠ ⎞ =
( 4 − 2 0 0 2 − 2 0 − 2 2 ∣ 0 0 0 ) ∼ \left(\begin{array}{rrr}4&-2&0\\0&2&-2\\0&-2&2\end{array}\right|\left.\begin{array}{r}0\\0\\0\end{array}\right)\sim ⎝ ⎛ 4 0 0 − 2 2 − 2 0 − 2 2 ∣ ∣ 0 0 0 ⎠ ⎞ ∼ L 3 + L 2 → L 3 ∼ L_3+L_2\to L_3\sim L 3 + L 2 → L 3 ∼
( 4 − 2 0 0 2 − 2 0 + 0 − 2 + 2 2 − 2 ∣ 0 0 0 ) = \left(\begin{array}{rrr}4&-2&0\\0&2&-2\\0+0&-2+2&2-2\end{array}\right|\left.\begin{array}{r}0\\0\\0\end{array}\right)= ⎝ ⎛ 4 0 0 + 0 − 2 2 − 2 + 2 0 − 2 2 − 2 ∣ ∣ 0 0 0 ⎠ ⎞ =
( 4 − 2 0 0 2 − 2 0 0 0 ∣ 0 0 0 ) \left(\begin{array}{rrr}4&-2&0\\0&2&-2\\0&0&0\end{array}\right|\left.\begin{array}{r}0\\0\\0\end{array}\right) ⎝ ⎛ 4 0 0 − 2 2 0 0 − 2 0 ∣ ∣ 0 0 0 ⎠ ⎞ .
System represented as the matryx is
{ 4 x 1 − 2 x 2 = 0 + 2 x 2 − 2 x 3 = 0 \left\{\begin{array}{rrrr}4x_1&-2x_2&&=0\\&+2x_2&-2x_3&=0\end{array}\right. { 4 x 1 − 2 x 2 + 2 x 2 − 2 x 3 = 0 = 0
Let x 3 x_3 x 3 be free while x 1 x_1 x 1 and x 2 x_2 x 2 be dependent on x 3 x_3 x 3 . Then
{ 4 x 1 = 2 x 2 2 x 2 = 2 x 3 ⇒ \left\{\begin{array}{rrrr}4x_1&&&=2x_2\\&2x_2&&=2x_3\end{array}\right.\Rightarrow { 4 x 1 2 x 2 = 2 x 2 = 2 x 3 ⇒ { 4 x 1 = 2 x 3 x 2 = x 3 ⇒ \left\{\begin{array}{rrrr}4x_1&&&=2x_3\\&x_2&&=x_3\end{array}\right.\Rightarrow { 4 x 1 x 2 = 2 x 3 = x 3 ⇒ { x 1 = 1 2 x 3 x 2 = x 3 \left\{\begin{array}{rrrr}x_1&&&=\frac12x_3\\&x_2&&=x_3\end{array}\right. { x 1 x 2 = 2 1 x 3 = x 3
Thus, the eigenvector corresponding to the eigenvalue λ 1 = − 2 \lambda_1=-2 λ 1 = − 2 is
v 1 = ( x 1 x 2 x 3 ) = \bold{v}_1=\left(\begin{array}{r}x_1\\x_2\\x_3\end{array}\right)= v 1 = ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = ( 1 2 x 3 x 3 x 3 ) \left(\begin{array}{r}\frac12x_3\\x_3\\x_3\end{array}\right) ⎝ ⎛ 2 1 x 3 x 3 x 3 ⎠ ⎞ .
Here x 3 x_3 x 3 is allowed to take any value. In particular, if x 3 = 1 x_3=1 x 3 = 1
v 1 = ( 1 2 1 1 ) \bold{v}_1=\left(\begin{array}{r}\frac12\\1\\1\end{array}\right) v 1 = ⎝ ⎛ 2 1 1 1 ⎠ ⎞ .
λ = λ 2 = 1 \lambda=\lambda_2=1 λ = λ 2 = 1
{ x 1 − 2 x 2 = 0 − 2 x 1 − 2 x 3 = 0 − 2 x 2 − x 3 = 0 \left\{\begin{array}{rrrr}x_1&-2x_2&&=0\\-2x_1&&-2x_3&=0\\&-2x_2&-x_3&=0\end{array}\right. ⎩ ⎨ ⎧ x 1 − 2 x 1 − 2 x 2 − 2 x 2 − 2 x 3 − x 3 = 0 = 0 = 0
Use Gaussian elimination modifying the augmented matrix
( 1 − 2 0 − 2 0 − 2 0 − 2 − 1 ∣ 0 0 0 ) ∼ \left(\begin{array}{rrr}1&-2&0\\-2&0&-2\\0&-2&-1\end{array}\right|\left.\begin{array}{r}0\\0\\0\end{array}\right)\sim ⎝ ⎛ 1 − 2 0 − 2 0 − 2 0 − 2 − 1 ∣ ∣ 0 0 0 ⎠ ⎞ ∼ L 2 + 2 L 1 → L 2 ∼ L_2+2L_1\to L_2\sim L 2 + 2 L 1 → L 2 ∼
( 1 − 2 0 − 2 + 2 ⋅ 1 0 + 2 ⋅ ( − 2 ) − 2 + 2 ⋅ 0 0 − 2 − 1 ∣ 0 0 0 ) = \left(\begin{array}{lll}1&-2&0\\-2+2\cdot1&0+2\cdot(-2)&-2+
2\cdot0\\0&-2&-1\end{array}\right|\left.\begin{array}{r}0\\0\\0\end{array}\right)= ⎝ ⎛ 1 − 2 + 2 ⋅ 1 0 − 2 0 + 2 ⋅ ( − 2 ) − 2 0 − 2 + 2 ⋅ 0 − 1 ∣ ∣ 0 0 0 ⎠ ⎞ =
( 1 − 2 0 0 − 4 − 2 0 − 2 − 1 ∣ 0 0 0 ) ∼ \left(\begin{array}{rrr}1&-2&0\\0&-4&-2\\0&-2&-1\end{array}\right|\left.\begin{array}{r}0\\0\\0\end{array}\right)\sim ⎝ ⎛ 1 0 0 − 2 − 4 − 2 0 − 2 − 1 ∣ ∣ 0 0 0 ⎠ ⎞ ∼ L 3 − 1 2 L 2 → L 3 ∼ L_3-\frac12L_2\to L_3\sim L 3 − 2 1 L 2 → L 3 ∼
( 1 − 2 0 0 − 4 − 2 0 − 1 2 ⋅ 0 − 2 − 1 2 ⋅ ( − 4 ) − 1 − 1 2 ⋅ ( − 2 ) ∣ 0 0 0 ) = \left(\begin{array}{lll}1&-2&0\\0&-4&-2\\0-\frac12\cdot0&-2-\frac12\cdot(-4)&-1-\frac12\cdot(-2)\end{array}\right|\left.\begin{array}{r}0\\0\\0\end{array}\right)= ⎝ ⎛ 1 0 0 − 2 1 ⋅ 0 − 2 − 4 − 2 − 2 1 ⋅ ( − 4 ) 0 − 2 − 1 − 2 1 ⋅ ( − 2 ) ∣ ∣ 0 0 0 ⎠ ⎞ =
( 1 − 2 0 0 − 4 − 2 0 0 0 ∣ 0 0 0 ) \left(\begin{array}{rrr}1&-2&0\\0&-4&-2\\0&0&0\end{array}\right|\left.\begin{array}{r}0\\0\\0\end{array}\right) ⎝ ⎛ 1 0 0 − 2 − 4 0 0 − 2 0 ∣ ∣ 0 0 0 ⎠ ⎞
System represented as the matryx is
{ x 1 − 2 x 2 = 0 − 4 x 2 − 2 x 3 = 0 \left\{\begin{array}{rrrr}x_1&-2x_2&&=0\\&-4x_2&-2x_3&=0\end{array}\right. { x 1 − 2 x 2 − 4 x 2 − 2 x 3 = 0 = 0
Let x 3 x_3 x 3 be free while x 1 x_1 x 1 and x 2 x_2 x 2 be dependent on x 3 x_3 x 3 . Then
{ x 1 = 2 x 2 − 4 x 2 = 2 x 3 ⇒ \left\{\begin{array}{rrrr}x_1&&&=2x_2\\&-4x_2&&=2x_3\end{array}\right.\Rightarrow { x 1 − 4 x 2 = 2 x 2 = 2 x 3 ⇒ { x 1 = 2 ( − 1 2 x 3 ) x 2 = − 1 2 x 3 ⇒ \left\{\begin{array}{rrrl}x_1&&&=2\left(-\frac12x_3\right)\\&x_2&&=-\frac12x_3\end{array}\right.\Rightarrow { x 1 x 2 = 2 ( − 2 1 x 3 ) = − 2 1 x 3 ⇒ { x 1 = − x 3 x 2 = − 1 2 x 3 \left\{\begin{array}{rrrl}x_1&&&=-x_3\\&x_2&&=-\frac12x_3\end{array}\right. { x 1 x 2 = − x 3 = − 2 1 x 3
Thus, the eigenvector corresponding to the eigenvalue λ 2 = 1 \lambda_2=1 λ 2 = 1 is
v 2 = ( x 1 x 2 x 3 ) = \bold{v}_2=\left(\begin{array}{r}x_1\\x_2\\x_3\end{array}\right)= v 2 = ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = ( − x 3 − 1 2 x 3 x 3 ) \left(\begin{array}{r}-x_3\\-\frac12x_3\\x_3\end{array}\right) ⎝ ⎛ − x 3 − 2 1 x 3 x 3 ⎠ ⎞ .
Here x 3 x_3 x 3 is allowed to take any value. In particular, if x 3 = 1 x_3=1 x 3 = 1
v 2 = ( − 1 − 1 2 1 ) \bold{v}_2=\left(\begin{array}{r}-1\\-\frac12\\1\end{array}\right) v 2 = ⎝ ⎛ − 1 − 2 1 1 ⎠ ⎞ .
λ = λ 3 = 4 \lambda=\lambda_3=4 λ = λ 3 = 4
{ − 2 x 1 − 2 x 2 = 0 − 2 x 1 − 3 x 2 − 2 x 3 = 0 − 2 x 2 − 4 x 3 = 0 \left\{\begin{array}{rrrr}-2x_1&-2x_2&&=0\\-2x_1&-3x_2&-2x_3&=0\\&-2x_2&-4x_3&=0\end{array}\right. ⎩ ⎨ ⎧ − 2 x 1 − 2 x 1 − 2 x 2 − 3 x 2 − 2 x 2 − 2 x 3 − 4 x 3 = 0 = 0 = 0
Use Gaussian elimination modifying the augmented matrix
( − 2 − 2 0 − 2 − 3 − 2 0 − 2 − 4 ∣ 0 0 0 ) ∼ \left(\begin{array}{rrr}-2&-2&0\\-2&-3&-2\\0&-2&-4\end{array}\right|\left.\begin{array}{r}0\\0\\0\end{array}\right)\sim ⎝ ⎛ − 2 − 2 0 − 2 − 3 − 2 0 − 2 − 4 ∣ ∣ 0 0 0 ⎠ ⎞ ∼ L 2 − L 1 → L 2 ∼ L_2-L_1\to L_2\sim L 2 − L 1 → L 2 ∼
( − 2 − 2 0 − 2 − ( − 2 ) − 3 − ( − 2 ) − 2 − 0 0 − 2 − 4 ∣ 0 0 0 ) = \left(\begin{array}{lll}-2&-2&0\\-2-(-2)&-3-(-2)&-2-0\\0&-2&-4\end{array}\right|\left.\begin{array}{r}0\\0\\0\end{array}\right)= ⎝ ⎛ − 2 − 2 − ( − 2 ) 0 − 2 − 3 − ( − 2 ) − 2 0 − 2 − 0 − 4 ∣ ∣ 0 0 0 ⎠ ⎞ =
( − 2 − 2 0 0 − 1 − 2 0 − 2 − 4 ∣ 0 0 0 ) ∼ \left(\begin{array}{rrr}-2&-2&0\\0&-1&-2\\0&-2&-4\end{array}\right|\left.\begin{array}{r}0\\0\\0\end{array}\right)\sim ⎝ ⎛ − 2 0 0 − 2 − 1 − 2 0 − 2 − 4 ∣ ∣ 0 0 0 ⎠ ⎞ ∼ L 3 − 2 L 2 → L 3 ∼ L_3-2L_2\to L_3\sim L 3 − 2 L 2 → L 3 ∼
( − 2 − 2 0 0 − 1 − 2 0 − 2 ⋅ 0 − 2 − 2 ⋅ ( − 1 ) − 4 − 2 ⋅ ( − 2 ) ∣ 0 0 0 ) = \left(\begin{array}{lll}-2&-2&0\\0&-1&-2\\0-2\cdot0&-2-2\cdot(-1)&-4-2\cdot(-2)\end{array}\right|\left.\begin{array}{r}0\\0\\0\end{array}\right)= ⎝ ⎛ − 2 0 0 − 2 ⋅ 0 − 2 − 1 − 2 − 2 ⋅ ( − 1 ) 0 − 2 − 4 − 2 ⋅ ( − 2 ) ∣ ∣ 0 0 0 ⎠ ⎞ =
( − 2 − 2 0 0 − 1 − 2 0 0 0 ∣ 0 0 0 ) \left(\begin{array}{rrr}-2&-2&0\\0&-1&-2\\0&0&0\end{array}\right|\left.\begin{array}{r}0\\0\\0\end{array}\right) ⎝ ⎛ − 2 0 0 − 2 − 1 0 0 − 2 0 ∣ ∣ 0 0 0 ⎠ ⎞ .
System represented as the matryx is
{ − 2 x 1 − 2 x 2 = 0 − x 2 − 2 x 3 = 0 \left\{\begin{array}{rrrr}-2x_1&-2x_2&&=0\\&-x_2&-2x_3&=0\end{array}\right. { − 2 x 1 − 2 x 2 − x 2 − 2 x 3 = 0 = 0
Let x 3 x_3 x 3 be free while x 1 x_1 x 1 and x 2 x_2 x 2 be dependent on x 3 x_3 x 3 . Then
{ − 2 x 1 = 2 x 2 − x 2 = 2 x 3 ⇒ \left\{\begin{array}{rrrr}-2x_1&&&=2x_2\\&-x_2&&=2x_3\end{array}\right.\Rightarrow { − 2 x 1 − x 2 = 2 x 2 = 2 x 3 ⇒ { x 1 = − x 2 x 2 = − 2 x 3 ⇒ \left\{\begin{array}{rrrl}x_1&&&=-x_2\\&x_2&&=-2x_3\end{array}\right.\Rightarrow { x 1 x 2 = − x 2 = − 2 x 3 ⇒ { x 1 = 2 x 3 x 2 = − 2 x 3 \left\{\begin{array}{rrrl}x_1&&&=2x_3\\&x_2&&=-2x_3\end{array}\right. { x 1 x 2 = 2 x 3 = − 2 x 3
Thus, the eigenvector corresponding to the eigenvalue λ 2 = 1 \lambda_2=1 λ 2 = 1 is
v 3 = ( x 1 x 2 x 3 ) = \bold{v}_3=\left(\begin{array}{r}x_1\\x_2\\x_3\end{array}\right)= v 3 = ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = ( 2 x 3 − 2 x 3 x 3 ) \left(\begin{array}{r}2x_3\\-2x_3\\x_3\end{array}\right) ⎝ ⎛ 2 x 3 − 2 x 3 x 3 ⎠ ⎞ .
Here x 3 x_3 x 3 is allowed to take any value. In particular, if x 3 = 1 x_3=1 x 3 = 1
v 3 = ( 2 − 2 1 ) \bold{v}_3=\left(\begin{array}{r}2\\-2\\1\end{array}\right) v 3 = ⎝ ⎛ 2 − 2 1 ⎠ ⎞ .
Answer:
Eigenvalues
λ 1 = − 2 \lambda_1=-2 λ 1 = − 2 , λ 2 = 1 \lambda_2=1 λ 2 = 1 , λ 3 = 4 \lambda_3=4 λ 3 = 4 .
Eigenvectors
v 1 = ( 1 2 1 1 ) t 1 \bold{v}_1=\left(\begin{array}{r}\frac12\\1\\1\end{array}\right)t_1 v 1 = ⎝ ⎛ 2 1 1 1 ⎠ ⎞ t 1 , v 2 = ( − 1 − 1 2 1 ) t 2 \bold{v}_2=\left(\begin{array}{r}-1\\-\frac12\\1\end{array}\right)t_2 v 2 = ⎝ ⎛ − 1 − 2 1 1 ⎠ ⎞ t 2 , v 3 = ( 2 − 2 1 ) t 3 \bold{v}_3=\left(\begin{array}{r}2\\-2\\1\end{array}\right)t_3 v 3 = ⎝ ⎛ 2 − 2 1 ⎠ ⎞ t 3 ,
where factors t 1 t_1 t 1 , t 2 t_2 t 2 , t 3 t_3 t 3 may take any value.
Comments