P=⎝⎛2−20−21−20−20⎠⎞
Eigenvalues λ1, λ2, λ3 are the roots of the characteristic polynomial of P .
Obtain the characteristic polynomial taking the determinant
∣∣2−λ−20−21−λ−20−2−λ∣∣=
(2−λ)(1−λ)(−λ)+(−2)⋅(−2)⋅0+ 0⋅(−2)⋅(−2)−
0⋅(1−λ)⋅0−(−2)⋅(−2)⋅(−λ)− (2−λ)⋅(−2)⋅(−2)=
(2−λ−2λ+λ2)(−λ)+0+0−0+4λ−(2−λ)⋅4=
(2−3λ+λ2)(−λ)+4λ−8+4λ=
−2λ+3λ2−λ3+8λ−8=
−λ3+3λ2+6λ−8
Find the roots factoring the polynomial
−(λ3−3λ2−6λ+8)=
−(λ3+8−3λ2−6λ)=
−((λ3+8)−(3λ2+6λ))=
−((λ3+23)−3λ(λ+2))=
−((λ+2)(λ2−2λ+22)−3λ(λ+2))=
−((λ+2)(λ2−2λ+4)−3λ(λ+2))=
−(λ+2)(λ2−2λ+4−3λ)=
−(λ+2)(λ2−5λ+4)=
−(λ+2)(λ2−4λ−λ+4)=
−(λ+2)((λ2−4λ)−(λ−4))=
−(λ+2)(λ(λ−4)−(λ−4))=
−(λ+2)(λ−1)(λ−4)
So the roots of polynomial are
λ1=−2,
λ2=1,
λ3=4.
Find eigenvectors solving the homogeneous system substituting λ by −2, 1, 4
⎩⎨⎧(2−λ)x1−2x1−2x2+(1−λ)x2−2x2−2x3−λx3=0=0=0
λ=λ1=−2
⎩⎨⎧4x1−2x1−2x2+3x2−2x2−2x3+2x3=0=0=0
Use Gaussian elimination modifying the augmented matrix
⎝⎛4−20−23−20−22∣∣000⎠⎞∼ L2+21L1→L2∼
⎝⎛4−2+21⋅40−23+21⋅(−2)−20−2+21⋅02∣∣000⎠⎞=
⎝⎛400−22−20−22∣∣000⎠⎞∼ L3+L2→L3∼
⎝⎛400+0−22−2+20−22−2∣∣000⎠⎞=
⎝⎛400−2200−20∣∣000⎠⎞.
System represented as the matryx is
{4x1−2x2+2x2−2x3=0=0
Let x3 be free while x1 and x2 be dependent on x3 . Then
{4x12x2=2x2=2x3⇒ {4x1x2=2x3=x3⇒ {x1x2=21x3=x3
Thus, the eigenvector corresponding to the eigenvalue λ1=−2 is
v1=⎝⎛x1x2x3⎠⎞= ⎝⎛21x3x3x3⎠⎞.
Here x3 is allowed to take any value. In particular, if x3=1
v1=⎝⎛2111⎠⎞.
λ=λ2=1
⎩⎨⎧x1−2x1−2x2−2x2−2x3−x3=0=0=0
Use Gaussian elimination modifying the augmented matrix
⎝⎛1−20−20−20−2−1∣∣000⎠⎞∼ L2+2L1→L2∼
⎝⎛1−2+2⋅10−20+2⋅(−2)−20−2+2⋅0−1∣∣000⎠⎞=
⎝⎛100−2−4−20−2−1∣∣000⎠⎞∼ L3−21L2→L3∼
⎝⎛100−21⋅0−2−4−2−21⋅(−4)0−2−1−21⋅(−2)∣∣000⎠⎞=
⎝⎛100−2−400−20∣∣000⎠⎞
System represented as the matryx is
{x1−2x2−4x2−2x3=0=0
Let x3 be free while x1 and x2 be dependent on x3 . Then
{x1−4x2=2x2=2x3⇒ {x1x2=2(−21x3)=−21x3⇒ {x1x2=−x3=−21x3
Thus, the eigenvector corresponding to the eigenvalue λ2=1 is
v2=⎝⎛x1x2x3⎠⎞= ⎝⎛−x3−21x3x3⎠⎞.
Here x3 is allowed to take any value. In particular, if x3=1
v2=⎝⎛−1−211⎠⎞.
λ=λ3=4
⎩⎨⎧−2x1−2x1−2x2−3x2−2x2−2x3−4x3=0=0=0
Use Gaussian elimination modifying the augmented matrix
⎝⎛−2−20−2−3−20−2−4∣∣000⎠⎞∼ L2−L1→L2∼
⎝⎛−2−2−(−2)0−2−3−(−2)−20−2−0−4∣∣000⎠⎞=
⎝⎛−200−2−1−20−2−4∣∣000⎠⎞∼ L3−2L2→L3∼
⎝⎛−200−2⋅0−2−1−2−2⋅(−1)0−2−4−2⋅(−2)∣∣000⎠⎞=
⎝⎛−200−2−100−20∣∣000⎠⎞ .
System represented as the matryx is
{−2x1−2x2−x2−2x3=0=0
Let x3 be free while x1 and x2 be dependent on x3 . Then
{−2x1−x2=2x2=2x3⇒ {x1x2=−x2=−2x3⇒ {x1x2=2x3=−2x3
Thus, the eigenvector corresponding to the eigenvalue λ2=1 is
v3=⎝⎛x1x2x3⎠⎞= ⎝⎛2x3−2x3x3⎠⎞.
Here x3 is allowed to take any value. In particular, if x3=1
v3=⎝⎛2−21⎠⎞.
Answer:
Eigenvalues
λ1=−2, λ2=1, λ3=4.
Eigenvectors
v1=⎝⎛2111⎠⎞t1, v2=⎝⎛−1−211⎠⎞t2, v3=⎝⎛2−21⎠⎞t3,
where factors t1 , t2 , t3 may take any value.
Comments