Question #162956

To verify Cayley-Hamilton theorem for

1 2 3

M = 2 -1 4

3 1 1


1
Expert's answer
2021-03-02T06:00:17-0500

AλI=0equation1λ3+λ2+18λ+30=0λ3+λ2+18λ+30I=0CalculateA2=[1431412968614]CalculateA3=[623968482178622462]Putallvaluesinequation1=[623968482178622462]+[1431412968614]+18[123214311]+30[100010001]=[000000000]L.H.s=R.H.sSothismatrixmeetsCaleyHamiltonTheorem\mid A- \lambda I=0\\ equation 1 - \lambda^3+\lambda^2+18\lambda+30=0\\ - \lambda^3+\lambda^2+18\lambda+30I=0\\ Calculate \, A^2=\begin{bmatrix} 14 & 3&14\\ 12 & 9&6\\ 8&6&14\\ \end{bmatrix}\\ Calculate \, A^3= \begin{bmatrix} 62& 39&68\\ 48 & 21&78\\ 62&24&62\\ \end{bmatrix} \\Put \, all \, values \, in \, equation \, 1\\\\= \begin{bmatrix} -62& -39&-68\\ -48 & -21&-78\\ -62&-24&-62 \end{bmatrix}+ \begin{bmatrix} 14& 3&14\\ 12 & 9&6\\ 8&6&14\\ \end{bmatrix}+18 \begin{bmatrix} 1& 2&3 \\ 2& -1&4\\ 3&1&1\\ \end{bmatrix}+30 \begin{bmatrix} 1& 0&0 \\ 0& 1&0\\ 0&0&1\\ \end{bmatrix}\\ = \begin{bmatrix} 0&0&0\\ 0&0&0\\ 0&0&0 \end{bmatrix}\\ L.H.s=R.H.s\\ So\, this\, matrix\, meets \,Caley \, Hamilton\, Theorem



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS