Question #158371

Find the basis (a1, a2, a3) that is dual to the following basis of R3

{u1 = (1, -1, 3), u2 = (0, 1, -1), u3 = (0, 3, -2)}



1
Expert's answer
2021-02-02T12:21:19-0500

The linear functional may be expressed in the form

a1(x,y,z)=m1x+m2y+m3z , a2(x,y,z)=n1x+n2y+n3za_1(x,y,z)=m_1x+m_2y+m_3z \ , \ a_2(x,y,z)=n_1x+n_2y+n_3z ,

a3(x,y,z)=p1x+p2y+p3za_3(x,y,z)=p_1x+p_2y+p_3z .

By definition of dual basis ,

ai(ui)=0 for ij but ai(ui)=1 for i=ja_i(u_i)=0 \ for \ i \neq j \ but \ a_i(u_i)=1 \ for \ i=j .

We define a1a_1 by setting a1((u1)=1,a1(u2)=0,a1(u3)=0a_1((u_1)=1,a_1(u_2)=0,a_1(u_3)=0 , This yields

a1(1,1,3)=m1m2+3m3=1 , a1(0,1,1)=m2m3=0a_1(1,-1,3)=m_1-m_2+3m_3=1 \ , \ a_1(0,1,-1)=m_2-m_3=0 ,

a1(0,3,2)=3m22m3=0a_1(0,3,-2)=3m_2-2m_3=0

solving the system of equations yields ,

m1=1,m2=0,m3=0m_1=1,m_2=0,m_3=0

Thus a1(x,y,z)=xa_1(x,y,z)=x

Now , we find a2a_2 by setting , a2(u1)=0,a2(u2)=1,a2(u3)=0a_2(u_1)=0,a_2(u_2)=1, a_2(u_3)=0 . This yields

a2(1,1,3)=n1n2+3n3=0 , a2(0,1,1)=n2n3=1a_2(1,-1,3)=n_1-n_2+3n_3=0 \ , \ a_2(0,1,-1)=n_2-n_3=1 ,

a2(0,3,2)=3n22n3=0a_2(0,3,-2)=3n_2-2n_3=0

Solving the system of equation yields ,

n1=7,n2=2,n3=3n_1=7,n_2=-2,n_3=-3

Thus a2(x,y,z)=7x2y3za_2(x,y,z)=7x-2y-3z .

we find a3a_3 by setting ,

a3(u1)=0,a3(u2)=0,a3(u3)=1a_3(u_1)=0,a_3(u_2)=0,a_3(u_3)=1 , This yields

a3(1,1,3)=p1p2+3p3=0 , a3(0,1,1)=p2p3=0a_3(1,-1,3)=p_1-p_2+3p_3=0 \ , \ a_3(0,1,-1)=p_2-p_3=0 ,

a3(0,3,2)=3p22p3=1a_3(0,3,-2)=3p_2-2p_3=1 ,

Solving the system of equation yields

p1=2,p2=1,p3=1p_1=-2,p_2=1,p_3=1

Thus a3(x,y,z)=2x+y+za_3(x,y,z)=-2x+y+z


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS