The linear functional may be expressed in the form
a1(x,y,z)=m1x+m2y+m3z , a2(x,y,z)=n1x+n2y+n3z ,
a3(x,y,z)=p1x+p2y+p3z .
By definition of dual basis ,
ai(ui)=0 for i=j but ai(ui)=1 for i=j .
We define a1 by setting a1((u1)=1,a1(u2)=0,a1(u3)=0 , This yields
a1(1,−1,3)=m1−m2+3m3=1 , a1(0,1,−1)=m2−m3=0 ,
a1(0,3,−2)=3m2−2m3=0
solving the system of equations yields ,
m1=1,m2=0,m3=0
Thus a1(x,y,z)=x
Now , we find a2 by setting , a2(u1)=0,a2(u2)=1,a2(u3)=0 . This yields
a2(1,−1,3)=n1−n2+3n3=0 , a2(0,1,−1)=n2−n3=1 ,
a2(0,3,−2)=3n2−2n3=0
Solving the system of equation yields ,
n1=7,n2=−2,n3=−3
Thus a2(x,y,z)=7x−2y−3z .
we find a3 by setting ,
a3(u1)=0,a3(u2)=0,a3(u3)=1 , This yields
a3(1,−1,3)=p1−p2+3p3=0 , a3(0,1,−1)=p2−p3=0 ,
a3(0,3,−2)=3p2−2p3=1 ,
Solving the system of equation yields
p1=−2,p2=1,p3=1
Thus a3(x,y,z)=−2x+y+z
Comments