Coordinates of u in basis v1, v2, v3, v4 are numbers s1, s2, s3, s4, such as:
u = s 1 v 1 + s 2 v 2 + s 3 v 3 + s 4 v 4 u=s_1v_1+s_2v_2+s_3v_3+s_4v_4 u = s 1 v 1 + s 2 v 2 + s 3 v 3 + s 4 v 4
We can write this using matrix:
( v 11 v 21 v 31 v 41 v 12 v 22 v 32 v 42 v 13 v 23 v 33 v 43 v 14 v 24 v 34 v 44 ) ( s 1 s 2 s 3 s 4 ) = ( u 1 u 2 u 3 u 4 ) \begin{pmatrix}
v_{11} & v_{21} & v_{31} & v_{41} \\
v_{12} & v_{22} & v_{32} & v_{42} \\
v_{13} & v_{23} & v_{33} & v_{43} \\
v_{14} & v_{24} & v_{34} & v_{44} \\
\end{pmatrix}
\begin{pmatrix}
s_1 \\ s_2 \\ s_3 \\ s_4
\end{pmatrix}
=
\begin{pmatrix}
u_1 \\ u_2 \\ u_3 \\ u_4
\end{pmatrix} ⎝ ⎛ v 11 v 12 v 13 v 14 v 21 v 22 v 23 v 24 v 31 v 32 v 33 v 34 v 41 v 42 v 43 v 44 ⎠ ⎞ ⎝ ⎛ s 1 s 2 s 3 s 4 ⎠ ⎞ = ⎝ ⎛ u 1 u 2 u 3 u 4 ⎠ ⎞
We've got the linear equation. We can solve it using matrix transformations (Gaussian method):
( v 11 v 21 v 31 v 41 ∣ u 1 v 12 v 22 v 32 v 42 ∣ u 2 v 13 v 23 v 33 v 43 ∣ u 3 v 14 v 24 v 34 v 44 ∣ u 4 ) = \begin{pmatrix}
v_{11} & v_{21} & v_{31} & v_{41} &|& u_1\\
v_{12} & v_{22} & v_{32} & v_{42} &|& u_2 \\
v_{13} & v_{23} & v_{33} & v_{43} &|& u_3 \\
v_{14} & v_{24} & v_{34} & v_{44} &|& u_4 \\
\end{pmatrix}
= ⎝ ⎛ v 11 v 12 v 13 v 14 v 21 v 22 v 23 v 24 v 31 v 32 v 33 v 34 v 41 v 42 v 43 v 44 ∣ ∣ ∣ ∣ u 1 u 2 u 3 u 4 ⎠ ⎞ =
= ( 1 − 2 1 1 ∣ − 1 − 1 2 2 0 ∣ 1 2 3 0 0 ∣ 2 − 1 2 − 1 1 ∣ 1 ) =
\begin{pmatrix}
1 & -2 & 1 & 1 &|& -1\\
-1 & 2 & 2 & 0 &|& 1 \\
2 & 3 & 0 & 0 &|& 2 \\
-1 & 2 & -1 & 1 &|& 1 \\
\end{pmatrix} = ⎝ ⎛ 1 − 1 2 − 1 − 2 2 3 2 1 2 0 − 1 1 0 0 1 ∣ ∣ ∣ ∣ − 1 1 2 1 ⎠ ⎞
Add first row to the second and fourth, and subtract 2 times first row from third row:
( 1 − 2 1 1 ∣ − 1 0 0 3 1 ∣ 0 0 7 − 2 − 2 ∣ 4 0 0 0 2 ∣ 0 ) \begin{pmatrix}
1 & -2 & 1 & 1 &|& -1\\
0 & 0 & 3 & 1 &|& 0 \\
0 & 7 & -2 & -2 &|& 4 \\
0 & 0 & 0 & 2 &|& 0 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 − 2 0 7 0 1 3 − 2 0 1 1 − 2 2 ∣ ∣ ∣ ∣ − 1 0 4 0 ⎠ ⎞
Swap second and third rows:
( 1 − 2 1 1 ∣ − 1 0 7 − 2 − 2 ∣ 4 0 0 3 1 ∣ 0 0 0 0 2 ∣ 0 ) \begin{pmatrix}
1 & -2 & 1 & 1 &|& -1\\
0 & 7 & -2 & -2 &|& 4 \\
0 & 0 & 3 & 1 &|& 0 \\
0 & 0 & 0 & 2 &|& 0 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 − 2 7 0 0 1 − 2 3 0 1 − 2 1 2 ∣ ∣ ∣ ∣ − 1 4 0 0 ⎠ ⎞
After transformations, we've got this system of equations:
s 1 − 2 s 2 + s 3 + s 4 = − 1 7 s 2 − 2 s 3 − 2 s 4 = 4 3 s 3 + s 4 = 0 2 s 4 = 0 s_1-2s_2+s_3+s_4=-1 \\
7s_2-2s_3-2s_4=4 \\
3s_3+s_4=0 \\
2s_4=0 s 1 − 2 s 2 + s 3 + s 4 = − 1 7 s 2 − 2 s 3 − 2 s 4 = 4 3 s 3 + s 4 = 0 2 s 4 = 0
s 1 − 2 s 2 + s 3 = − 1 7 s 2 − 2 s 3 = 4 3 s 3 = 0 s 4 = 0 s_1-2s_2+s_3=-1 \\
7s_2-2s_3=4 \\
3s_3=0 \\
s_4=0 s 1 − 2 s 2 + s 3 = − 1 7 s 2 − 2 s 3 = 4 3 s 3 = 0 s 4 = 0
s 1 − 2 s 2 = − 1 7 s 2 = 4 s 3 = 0 s 4 = 0 s_1-2s_2=-1 \\
7s_2=4 \\
s_3=0 \\
s_4=0 s 1 − 2 s 2 = − 1 7 s 2 = 4 s 3 = 0 s 4 = 0
s 1 − 8 / 7 = − 1 s 2 = 4 / 7 s 3 = 0 s 4 = 0 s_1-8/7=-1 \\
s_2=4/7 \\
s_3=0 \\
s_4=0 s 1 − 8/7 = − 1 s 2 = 4/7 s 3 = 0 s 4 = 0
s 1 = 1 / 7 s 2 = 4 / 7 s 3 = 0 s 4 = 0 s_1=1/7 \\
s_2=4/7 \\
s_3=0 \\
s_4=0 s 1 = 1/7 s 2 = 4/7 s 3 = 0 s 4 = 0
Check the solution. If solution is correct, we'll get (-1, 1, 2, 1):
u = 1 / 7 v 1 + 4 / 7 v 2 = 1 / 7 ( v 1 + 4 v 2 ) = = 1 / 7 ( 1 − 8 , − 1 + 8 , 2 + 12 , − 1 + 8 ) = = 1 / 7 ( − 7 , 7 , 14 , 7 ) = ( − 1 , 1 , 2 , 1 ) u=1/7v_1+4/7v_2=1/7(v_1+4v_2)=\\
=1/7(1-8, -1+8, 2+12, -1+8)=\\
=1/7(-7, 7, 14, 7)=(-1,1,2,1) u = 1/7 v 1 + 4/7 v 2 = 1/7 ( v 1 + 4 v 2 ) = = 1/7 ( 1 − 8 , − 1 + 8 , 2 + 12 , − 1 + 8 ) = = 1/7 ( − 7 , 7 , 14 , 7 ) = ( − 1 , 1 , 2 , 1 )
Solution is correct.
Comments