Question #156283
Let A = {(x, y, z) E R^3ㅣx - y + z = 0} where E represents "an element of" and R the set of real numbers
(a) Show that A is a vector space
(b) Give the dimensions and basis of A.
1
Expert's answer
2021-02-01T07:31:59-0500

Let A={(x,y,z)R3xy+z=0}A = \{(x, y, z) \in\mathbb R^3ㅣx - y + z = 0\}



(a) Let us show that AA is a vector space. For this it is sufficient to show that AA is a subspace of the vector space R3\mathbb R^3. Let (x1,y1,z1),(x2,y2,z2)A,  αR(x_1,y_1,z_1),(x_2,y_2,z_2)\in A,\ \ \alpha\in \mathbb R. Then x1y1+z1=0x_1-y_1+z_1=0 and x2y2+z2=0x_2-y_2+z_2=0. Since (x1+x2)(y1+y2)+(z1+z2)=(x1y1+z1)+(x2y2+z2)=0+0=0(x_1+x_2)-(y_1+y_2)+(z_1+z_2)=(x_1-y_1+z_1)+(x_2-y_2+z_2)=0+0=0 and αx1αy1+αz1=α(x1y1+z1)=α0=0\alpha x_1-\alpha y_1+\alpha z_1=\alpha( x_1-y_1+z_1)=\alpha\cdot 0=0, we conclude that (x1,y1,z1)+(x2,y2,z2)=(x1+x2,y1+y2,z1+z2)A(x_1,y_1,z_1)+(x_2,y_2,z_2)=(x_1+x_2,y_1+y_2,z_1+z_2)\in A and α(x1,y1,z1)=(αx1,αy1,αz1)A\alpha (x_1,y_1,z_1)=(\alpha x_1,\alpha y_1,\alpha z_1)\in A. Therefore, AA is a vector space.


(b) Let us give the dimensions and basis of AA. Since A={(x,y,z)R3xy+z=0}={(x,x+z,z)R3x,zR}={(x,x,0)+(0,z,z)R3x,zR}={x(1,1,0)+z(0,1,1)R3x,zR},A = \{(x, y, z) \in\mathbb R^3ㅣx - y + z = 0\}= \{(x, x+z, z) \in\mathbb R^3ㅣx, z \in\mathbb R\}= \{(x, x, 0)+(0, z, z) \in\mathbb R^3ㅣx, z \in\mathbb R\}= \{x(1, 1, 0)+z(0, 1, 1) \in\mathbb R^3ㅣx, z \in\mathbb R\},

we conclude that the lenearly independent vectors (1,1,0)(1,1,0) and (0,1,1)(0,1,1) form a basis of AA. Consequently, the dimension of AA is equal to 2.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS