Let "A = \\{(x, y, z) \\in\\mathbb R^3\u3163x - y + z = 0\\}"
(a) Let us show that "A" is a vector space. For this it is sufficient to show that "A" is a subspace of the vector space "\\mathbb R^3". Let "(x_1,y_1,z_1),(x_2,y_2,z_2)\\in A,\\ \\ \\alpha\\in \\mathbb R". Then "x_1-y_1+z_1=0" and "x_2-y_2+z_2=0". Since "(x_1+x_2)-(y_1+y_2)+(z_1+z_2)=(x_1-y_1+z_1)+(x_2-y_2+z_2)=0+0=0" and "\\alpha x_1-\\alpha y_1+\\alpha z_1=\\alpha( x_1-y_1+z_1)=\\alpha\\cdot 0=0", we conclude that "(x_1,y_1,z_1)+(x_2,y_2,z_2)=(x_1+x_2,y_1+y_2,z_1+z_2)\\in A" and "\\alpha (x_1,y_1,z_1)=(\\alpha x_1,\\alpha y_1,\\alpha z_1)\\in A". Therefore, "A" is a vector space.
(b) Let us give the dimensions and basis of "A". Since "A = \\{(x, y, z) \\in\\mathbb R^3\u3163x - y + z = 0\\}= \\{(x, x+z, z) \\in\\mathbb R^3\u3163x, z \\in\\mathbb R\\}=\n \\{(x, x, 0)+(0, z, z) \\in\\mathbb R^3\u3163x, z \\in\\mathbb R\\}=\n \\{x(1, 1, 0)+z(0, 1, 1) \\in\\mathbb R^3\u3163x, z \\in\\mathbb R\\},"
we conclude that the lenearly independent vectors "(1,1,0)" and "(0,1,1)" form a basis of "A". Consequently, the dimension of "A" is equal to 2.
Comments
Leave a comment