Here the minimal polynomial is t 4 − 5 t 3 − 2 t 2 + 7 t + 4 t^4-5t^3-2t^2+7t+4 t 4 − 5 t 3 − 2 t 2 + 7 t + 4 .
Equating it to 0, and finding the roots we get:-
t 4 − 5 t 3 − 2 t 2 + 7 t + 4 = 0 ⇒ t = 1.4 o r t = 5.093 t^4-5t^3-2t^2+7t+4=0\\
\Rightarrow t=1.4\>or\>t=5.093 t 4 − 5 t 3 − 2 t 2 + 7 t + 4 = 0 ⇒ t = 1.4 or t = 5.093 Now, by forceful calculation we get that that the minimal polynomial can be factored as:-
( t − 1.4 ) 3 ( t − 5.093 ) (t-1.4)^3(t-5.093) ( t − 1.4 ) 3 ( t − 5.093 )
So, the values in the primary diagonal will be:-
1.4 , 1.4 , 1.4 , 5.093 1.4,1.4,1.4,5.093 1.4 , 1.4 , 1.4 , 5.093
So, our required matrix A is:-
A = [ 1.4 0 0 0 0 1.4 0 0 0 0 1.4 0 0 0 0 5.093 ] A=\begin{bmatrix}
1.4 & 0 & 0 & 0\\
0 & 1.4 & 0 & 0\\
0 & 0 & 1.4 & 0\\
0 & 0 & 0 & 5.093
\end{bmatrix} A = ⎣ ⎡ 1.4 0 0 0 0 1.4 0 0 0 0 1.4 0 0 0 0 5.093 ⎦ ⎤
Comments