Denote u=(2,0,3). A vector v=(v1,v2,v3)⊥u if
u.v=0⟹2v1+3v3=0⟹v3=−32v1(and v2 is arbitrary). Take, for example v1=3,v3=−2 and v2=0. Then v=(3,0,−2) is orthogonal to u.
To construct a third vector w=(w1,w2,w3) orthogonal to u and v we follow the same technique: u.w and v.w=0 give
{2w1+3w3=03w1−2w3=0⟹w1=w3=0 and w2 is arbitrary Take, for example, w=(0,1,0).
Then {(2,0,3),(−3,0,2),(0,1,0)} is an orthogonal basis of R3.
Comments