Complete { (2, 0, 3)} to form an orthogonal
basis of R³
Denote "u=(2,0,3)". A vector "v=(v_1,v_2,v_3)\\perp u" if
"u.v=0\\implies2v_1+3v_3=0\\implies v_3=-\\tfrac{2}{3}v_1\\;(\\text{and } v_2 \\text{ is arbitrary})."Take, for example "v_1=3,\\;v_3=-2\\text{ and }v_2=0". Then "v=(3,0,-2)" is orthogonal to "u".
To construct a third vector "w=(w_1,w_2,w_3)" orthogonal to "u\\text{ and }v" we follow the same technique: "u.w\\text{ and }v.w=0" give
"\\begin{cases}2w_1+3w_3=0\\\\3w_1-2w_3=0\\end{cases}\\implies w_1=w_3=0\\text{ and }w_2\\text{ is arbitrary}"Take, for example, "w=(0,1,0)".
Then "\\{(2,0,3),(-3,0,2),(0,1,0)\\}" is an orthogonal basis of "\\mathbb{R}^3".
Comments
Leave a comment