Question #154710

Complete { (2, 0, 3)} to form an orthogonal 

basis of R³


1
Expert's answer
2021-01-11T10:05:16-0500

Denote u=(2,0,3)u=(2,0,3). A vector v=(v1,v2,v3)uv=(v_1,v_2,v_3)\perp u if

u.v=0    2v1+3v3=0    v3=23v1  (and v2 is arbitrary).u.v=0\implies2v_1+3v_3=0\implies v_3=-\tfrac{2}{3}v_1\;(\text{and } v_2 \text{ is arbitrary}).

Take, for example v1=3,  v3=2 and v2=0v_1=3,\;v_3=-2\text{ and }v_2=0. Then v=(3,0,2)v=(3,0,-2) is orthogonal to uu.


To construct a third vector w=(w1,w2,w3)w=(w_1,w_2,w_3) orthogonal to u and vu\text{ and }v we follow the same technique: u.w and v.w=0u.w\text{ and }v.w=0 give

{2w1+3w3=03w12w3=0    w1=w3=0 and w2 is arbitrary\begin{cases}2w_1+3w_3=0\\3w_1-2w_3=0\end{cases}\implies w_1=w_3=0\text{ and }w_2\text{ is arbitrary}

Take, for example, w=(0,1,0)w=(0,1,0).


Then {(2,0,3),(3,0,2),(0,1,0)}\{(2,0,3),(-3,0,2),(0,1,0)\} is an orthogonal basis of R3\mathbb{R}^3.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS