Let us find the kernel:
ker ( T ) = { ( x 1 , x 2 , x 3 ) ∈ R 3 ∣ T ( x 1 , x 2 , x 3 ) = ( 0 , 0 , 0 , 0 ) } = \ker (T)=\{(x_1,x_2,x_3)\in\mathbb R^3\ |\ T(x_1,x_2,x_3)=(0,0,0,0)\}= ker ( T ) = {( x 1 , x 2 , x 3 ) ∈ R 3 ∣ T ( x 1 , x 2 , x 3 ) = ( 0 , 0 , 0 , 0 )} =
= { ( x 1 , x 2 , x 3 ) ∈ R 3 ∣ ( x 1 + x 2 , x 2 + x 3 , x 1 − x 3 , 2 x 1 + x 2 − x 3 ) = ( 0 , 0 , 0 , 0 ) } =\{(x_1,x_2,x_3)\in\mathbb R^3\ |\ (x_1+x_2, x_2+x_3, x_1-x_3, 2x_1+x_2-x_3)=(0,0,0,0)\} = {( x 1 , x 2 , x 3 ) ∈ R 3 ∣ ( x 1 + x 2 , x 2 + x 3 , x 1 − x 3 , 2 x 1 + x 2 − x 3 ) = ( 0 , 0 , 0 , 0 )}
It follows that we must solve the following system:
{ x 1 + x 2 = 0 x 2 + x 3 = 0 x 1 − x 3 = 0 2 x 1 + x 2 − x 3 = 0 \begin{cases}
x_1+x_2=0\\ x_2+x_3=0\\ x_1-x_3=0\\ 2x_1+x_2-x_3=0
\end{cases} ⎩ ⎨ ⎧ x 1 + x 2 = 0 x 2 + x 3 = 0 x 1 − x 3 = 0 2 x 1 + x 2 − x 3 = 0 which is equivalent to the system
{ x 1 = − x 2 x 2 = − x 3 x 1 = x 3 2 x 3 − x 3 − x 3 = 0 \begin{cases}
x_1=-x_2\\ x_2=-x_3\\ x_1=x_3\\ 2x_3-x_3-x_3=0
\end{cases} ⎩ ⎨ ⎧ x 1 = − x 2 x 2 = − x 3 x 1 = x 3 2 x 3 − x 3 − x 3 = 0 and to the system
{ x 2 = − x 3 x 1 = x 3 x 3 ∈ R \begin{cases}
x_2=-x_3\\ x_1=x_3\\x_3\in\mathbb R
\end{cases} ⎩ ⎨ ⎧ x 2 = − x 3 x 1 = x 3 x 3 ∈ R
Therefore, ker ( T ) = { ( x 1 , x 2 , x 3 ) ∈ R 3 ∣ x 2 = − x 3 , x 1 = x 3 } = { ( x 3 , − x 3 , x 3 ) ∣ x 3 ∈ R } = { x 3 ( 1 , − 1 , 1 ) ∣ x 3 ∈ R } . \ker (T)=\{(x_1,x_2,x_3)\in\mathbb R^3\ |\ x_2=-x_3,x_1=x_3\}=\{(x_3,-x_3,x_3)\ |\ x_3\in\mathbb R\}=\{x_3(1,-1,1)\ |\ x_3\in\mathbb R\}. ker ( T ) = {( x 1 , x 2 , x 3 ) ∈ R 3 ∣ x 2 = − x 3 , x 1 = x 3 } = {( x 3 , − x 3 , x 3 ) ∣ x 3 ∈ R } = { x 3 ( 1 , − 1 , 1 ) ∣ x 3 ∈ R } .
It follows that dim ( ker ( T ) ) = 1. \dim(\ker(T))=1. dim ( ker ( T )) = 1.
Comments