q(x1 , x2 )= 3x1 2 - 6x1 x2 +11x2 2
matrix of the quadratic equation is A = ( 3 − 3 − 3 11 ) A=\begin{pmatrix}
3 & -3 \\
-3 & 11
\end{pmatrix} A = ( 3 − 3 − 3 11 )
first we find the orthonormal diagonalization
d e t ( A − λ I ) = 0 det(A -\lambda\Iota) = 0 d e t ( A − λ I ) = 0
I = [ 1 0 0 1 ] \Iota = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} I = [ 1 0 0 1 ]
λ I = [ λ 0 0 λ ] \lambda\Iota =
\begin{bmatrix}
\lambda\ & 0 \\
0 & \lambda
\end{bmatrix} λ I = [ λ 0 0 λ ]
∵ A − λ I = A = [ 3 − 3 − 3 11 ] − [ λ 0 0 λ ] = [ 3 − λ − 3 − 3 11 − λ ] \because A -\lambda\Iota = A=\begin{bmatrix}
3 & -3 \\
-3 & 11
\end{bmatrix} - \begin{bmatrix}
\lambda\ & 0 \\
0 & \lambda
\end{bmatrix} = \begin{bmatrix}
3-\lambda\ & -3 \\
-3 & 11-\lambda
\end{bmatrix} ∵ A − λ I = A = [ 3 − 3 − 3 11 ] − [ λ 0 0 λ ] = [ 3 − λ − 3 − 3 11 − λ ]
d e t ( A − λ I ) = [ ( 3 − λ ) ( 11 − λ ) ] − 9 = 0 det(A -\lambda\Iota) = [(3-\lambda)(11-\lambda)] - 9 =0 d e t ( A − λ I ) = [( 3 − λ ) ( 11 − λ )] − 9 = 0
33 − 3 λ − 11 λ + λ 2 − 9 = 0 33 -3\lambda-11\lambda + \lambda^2 -9= 0 33 − 3 λ − 11 λ + λ 2 − 9 = 0
λ 2 − 14 λ + 24 = 0 \lambda^2 - 14\lambda +24= 0 λ 2 − 14 λ + 24 = 0
λ = 2 , λ = 12 \lambda = 2 , \lambda =12 λ = 2 , λ = 12 (eigen values)
when λ = 2 : N ( A − ( 2 ) I ) \lambda=2: N(A-(2)\Iota) λ = 2 : N ( A − ( 2 ) I )
[ 1 − 3 − 3 9 ] → \begin{bmatrix}
1 & -3 \\
-3 & 9
\end{bmatrix} \to [ 1 − 3 − 3 9 ] → [ 1 − 3 0 0 ] \begin{bmatrix}
1 & -3 \\
0 & 0
\end{bmatrix} [ 1 0 − 3 0 ] eigen space : span [ 3 1 ] \begin{bmatrix}
3 \\
1
\end{bmatrix} [ 3 1 ]
we normalize the vectors to get orthonormal vectors 1 1 + 9 [ 3 1 ] {1 \over \sqrt{1 + 9}} \begin{bmatrix}
3 \\
1
\end{bmatrix} 1 + 9 1 [ 3 1 ]
[ 3 10 1 10 ] \begin{bmatrix}
{3 \over \sqrt{10 }} \\
{1 \over \sqrt{10}}
\end{bmatrix} [ 10 3 10 1 ]
when λ = 12 : N ( A − ( 12 ) I ) \lambda=12: N(A-(12)\Iota) λ = 12 : N ( A − ( 12 ) I )
[ − 9 − 3 − 3 − 1 ] → \begin{bmatrix}
-9 & -3 \\
-3 & -1
\end{bmatrix} \to [ − 9 − 3 − 3 − 1 ] → [ − 9 − 3 0 0 ] \begin{bmatrix}
-9 & -3 \\
0 & 0
\end{bmatrix} [ − 9 0 − 3 0 ] eigen space : span[ 1 − 3 ] \begin{bmatrix}
1 \\
-3
\end{bmatrix} [ 1 − 3 ]
we normalize the vectors to get orthonormal vectors 1 1 + 9 [ 1 − 3 ] {1 \over \sqrt{1 + 9}} \begin{bmatrix}
1 \\
-3
\end{bmatrix} 1 + 9 1 [ 1 − 3 ]
[ 1 10 − 3 10 ] \begin{bmatrix}
{1 \over \sqrt{10 }} \\
{-3 \over \sqrt{10}}
\end{bmatrix} [ 10 1 10 − 3 ]
orthonormal diagonalization:
D= [ 2 0 0 12 ] , P = [ 3 10 1 10 1 10 − 3 10 ] \begin{bmatrix}
2 & 0 \\
0 & 12
\end{bmatrix},P= \begin{bmatrix}
{3 \over \sqrt{10 }} & {1 \over \sqrt{10 }} \\
{1 \over \sqrt{10 }} & -{3 \over \sqrt{10 }}
\end{bmatrix} [ 2 0 0 12 ] , P = [ 10 3 10 1 10 1 − 10 3 ]
Now we make a change of coordinates: Before it was q(y1 ,y2 )= P-1 x = PT x Now it will be q(x1 ,x2 )= PT (y1 ,y2 )
(x1 ,x2 ) = [ 3 10 1 10 1 10 − 3 10 ] \begin{bmatrix}
{3 \over \sqrt{10 }} & {1 \over \sqrt{10 }} \\
{1 \over \sqrt{10 }} & -{3 \over \sqrt{10 }}
\end{bmatrix} [ 10 3 10 1 10 1 − 10 3 ] (y1 ,y2 )
Comments