Answer to Question #154594 in Linear Algebra for Ashweta Padhan

Question #154594

Let q(x1, x2)= 3x12 - 6x1x2 +11x22. Then find an orthonormal change of coordinate that diagonalizes the above quadratic form q


1
Expert's answer
2021-01-12T15:09:12-0500

 q(x1, x2)= 3x12 - 6x1x2 +11x22

matrix of the quadratic equation is A=(33311)A=\begin{pmatrix} 3 & -3 \\ -3 & 11 \end{pmatrix}


first we find the orthonormal diagonalization

det(AλI)=0det(A -\lambda\Iota) = 0


I=[1001]\Iota = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}


λI=[λ 00λ]\lambda\Iota = \begin{bmatrix} \lambda\ & 0 \\ 0 & \lambda \end{bmatrix}

AλI=A=[33311][λ 00λ]=[3λ 3311λ]\because A -\lambda\Iota = A=\begin{bmatrix} 3 & -3 \\ -3 & 11 \end{bmatrix} - \begin{bmatrix} \lambda\ & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 3-\lambda\ & -3 \\ -3 & 11-\lambda \end{bmatrix}


det(AλI)=[(3λ)(11λ)]9=0det(A -\lambda\Iota) = [(3-\lambda)(11-\lambda)] - 9 =0


333λ11λ+λ29=033 -3\lambda-11\lambda + \lambda^2 -9= 0

λ214λ+24=0\lambda^2 - 14\lambda +24= 0

λ=2,λ=12\lambda = 2 , \lambda =12 (eigen values)

when λ=2:N(A(2)I)\lambda=2: N(A-(2)\Iota)

[1339]\begin{bmatrix} 1 & -3 \\ -3 & 9 \end{bmatrix} \to [1300]\begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix} eigen space : span [31]\begin{bmatrix} 3 \\ 1 \end{bmatrix}


we normalize the vectors to get orthonormal vectors 11+9[31]{1 \over \sqrt{1 + 9}} \begin{bmatrix} 3 \\ 1 \end{bmatrix}

[310110]\begin{bmatrix} {3 \over \sqrt{10 }} \\ {1 \over \sqrt{10}} \end{bmatrix}


when λ=12:N(A(12)I)\lambda=12: N(A-(12)\Iota)

[9331]\begin{bmatrix} -9 & -3 \\ -3 & -1 \end{bmatrix} \to [9300]\begin{bmatrix} -9 & -3 \\ 0 & 0 \end{bmatrix} eigen space : span[13]\begin{bmatrix} 1 \\ -3 \end{bmatrix}

we normalize the vectors to get orthonormal vectors 11+9[13]{1 \over \sqrt{1 + 9}} \begin{bmatrix} 1 \\ -3 \end{bmatrix}

[110310]\begin{bmatrix} {1 \over \sqrt{10 }} \\ {-3 \over \sqrt{10}} \end{bmatrix}


orthonormal diagonalization:

D= [20012],P=[310110110310]\begin{bmatrix} 2 & 0 \\ 0 & 12 \end{bmatrix},P= \begin{bmatrix} {3 \over \sqrt{10 }} & {1 \over \sqrt{10 }} \\ {1 \over \sqrt{10 }} & -{3 \over \sqrt{10 }} \end{bmatrix}


Now we make a change of coordinates: Before it was q(y1,y2)= P-1x = PTx Now it will be q(x1,x2)= PT(y1,y2)

(x1,x2) = [310110110310]\begin{bmatrix} {3 \over \sqrt{10 }} & {1 \over \sqrt{10 }} \\ {1 \over \sqrt{10 }} & -{3 \over \sqrt{10 }} \end{bmatrix} (y1,y2)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment