q(x1, x2)= 3x12 - 6x1x2 +11x22
matrix of the quadratic equation is A=(3−3−311)
first we find the orthonormal diagonalization
det(A−λI)=0
I=[1001]
λI=[λ 00λ]
∵A−λI=A=[3−3−311]−[λ 00λ]=[3−λ −3−311−λ]
det(A−λI)=[(3−λ)(11−λ)]−9=0
33−3λ−11λ+λ2−9=0
λ2−14λ+24=0
λ=2,λ=12 (eigen values)
when λ=2:N(A−(2)I)
[1−3−39]→ [10−30] eigen space : span [31]
we normalize the vectors to get orthonormal vectors 1+91[31]
[103101]
when λ=12:N(A−(12)I)
[−9−3−3−1]→ [−90−30] eigen space : span[1−3]
we normalize the vectors to get orthonormal vectors 1+91[1−3]
[10110−3]
orthonormal diagonalization:
D= [20012],P=[103101101−103]
Now we make a change of coordinates: Before it was q(y1,y2)= P-1x = PTx Now it will be q(x1,x2)= PT(y1,y2)
(x1,x2) = [103101101−103] (y1,y2)
Comments
Leave a comment