x + y + z = 9
2x - 3y + 4z = 13
3x + 4y + 5z = 40 to find x, y, z we use Row echelon form
[ 1 1 1 9 2 − 3 4 13 3 4 5 40 ] \begin{bmatrix}
1 & 1 & 1 && 9 \\
2 & -3 & 4 && 13 \\
3 & 4 & 5 && 40 \\
\end{bmatrix} ⎣ ⎡ 1 2 3 1 − 3 4 1 4 5 9 13 40 ⎦ ⎤ = ∣ R 2 = 2 R 1 − R 2 R 3 = 2 R 3 − 3 R 2 ∣ \begin{vmatrix}
R_2 = 2R_1 - R_2 \\
R_3 = 2R_3-3R_2 \\
\end{vmatrix} ∣ ∣ R 2 = 2 R 1 − R 2 R 3 = 2 R 3 − 3 R 2 ∣ ∣ =
[ 1 1 1 9 0 5 − 2 5 0 17 − 2 41 ] \begin{bmatrix}
1 & 1 & 1 && 9 \\
0 & 5 & -2 && 5 \\
0 & 17 & -2 && 41 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 1 5 17 1 − 2 − 2 9 5 41 ⎦ ⎤ = ∣ R 3 = 5 R 3 − 17 R 2 ∣ \begin{vmatrix}
R_3 = 5R_3-17R_2 \\
\end{vmatrix} ∣ ∣ R 3 = 5 R 3 − 17 R 2 ∣ ∣ =
[ 1 1 1 9 0 5 − 2 5 0 0 24 120 ] \begin{bmatrix}
1 & 1 & 1 && 9 \\
0 & 5 & -2 && 5 \\
0 & 0 & 24 && 120 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 1 5 0 1 − 2 24 9 5 120 ⎦ ⎤ = [ 1 1 1 9 0 1 − 0.4 1 0 0 1 5 ] \begin{bmatrix}
1 & 1 & 1 && 9 \\
0 & 1 & -0.4 && 1 \\
0 & 0 & 1 && 5 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 1 1 0 1 − 0.4 1 9 1 5 ⎦ ⎤ => z = 5;
y - 0.4z = 1 => y - 0.4*5 = 1 => y = 3;
x + y + z = 9 => x + 3 + 5 = 9 => x = 1;
Answer: [1, 3, 5]
Comments