x+y+z=9
2x-3y+4z=13
3x+4y+5z=40
x + y + z = 9
2x - 3y + 4z = 13
3x + 4y + 5z = 40Â Â Â to find x, y, z we use Row echelon form
"\\begin{bmatrix}\n 1 & 1 & 1 && 9 \\\\\n 2 & -3 & 4 && 13 \\\\ \n3 & 4 & 5 && 40 \\\\ \n\\end{bmatrix}" = "\\begin{vmatrix}\n \n R_2 = 2R_1 - R_2 \\\\ \nR_3 = 2R_3-3R_2 \\\\ \n\\end{vmatrix}" =
"\\begin{bmatrix}\n 1 & 1 & 1 && 9 \\\\\n 0 & 5 & -2 && 5 \\\\ \n0 & 17 & -2 && 41 \\\\ \n\\end{bmatrix}" = "\\begin{vmatrix}\nR_3 = 5R_3-17R_2 \\\\ \n\\end{vmatrix}" =
"\\begin{bmatrix}\n 1 & 1 & 1 && 9 \\\\\n 0 & 5 & -2 && 5 \\\\ \n0 & 0 & 24 && 120 \\\\ \n\\end{bmatrix}" = "\\begin{bmatrix}\n 1 & 1 & 1 && 9 \\\\\n 0 & 1 & -0.4 && 1 \\\\ \n0 & 0 & 1 && 5 \\\\ \n\\end{bmatrix}" => z = 5;
y - 0.4z = 1 => y - 0.4*5 = 1 => y =Â 3;
x + y + z = 9 => x + 3 + 5 = 9 => x = 1;
Answer: [1, 3, 5]
Comments
Leave a comment