Answer:
Step 1
F:43→43 by
F(z1,z2,z3)= (2 z1+(1-i)z2, (3+2i) z1-4iz3, 2iz1+ (4-3i)z2-3z3)
Step 2
Way to find the adjoint of F
(I) Find matrix of f with respect to basis {e1,e2, e3}
where e1=(1,0,0) , e2=(0,1,0) , e3=(0,0,1)
Let A be the matrix corresponding to F.
(II) Compute ( AT)
(II) Hence adjoint F*: 43→43 is
F* (z1,z2,z3)= ( AT) ⎣⎡z1z2z3⎦⎤
Now
F(e1) = F(1,0,0) = ( 2,(3+2i), 2i)
F(e2) = F(0,1,0) = ( 1-i, 0, 4-3i)
F(e3) = F(0,0,1) = ( 0,-4i, -3)
Step 3
Hence
A= ⎣⎡23+2i2i1−i04−3i0−4i−3⎦⎤
AT= ⎣⎡21−i03+2i0−4i2i4−3i−3⎦⎤
AT =⎣⎡21+i03−2i04i−2i4+3i−3⎦⎤
Hence F*: 43→43 is
F* (z1,z2,z3)= ( AT) ⎣⎡z1z2z3⎦⎤
=⎣⎡21+i03−2i04i−2i4+3i−3⎦⎤⎣⎡z1z2z3⎦⎤
=(2 z1+(3+2i)z2- 2iz3, (1+i)z1+4+3iz3, iz2-3z3)
Therefore,
F (z1,z2,z3)=(2 z1+(3+2i)z2- 2iz3, (1+i)z1+4+3iz3, iz2-3z3)
Comments
Leave a comment