Answer to Question #154539 in Linear Algebra for Ashweta Padhan

Question #154539

Find the adjoint of F:C3 tends to C3 defined by F(z1, z2, z3)=(2z1+(1-i)z2 , (3+2i)z1 -4iz3 , 2iz1+(4-3i)z2 - 3z3 )


1
Expert's answer
2021-01-11T09:57:15-0500

Answer:


Step 1

F:43\rarr43 by

F(\lparenz1,z2,z3)\rparen= (\lparen2 z1+(\lparen1-i)\rparenz2, (\lparen3+2i)\rparen z1-4iz3, 2iz1+ (\lparen4-3i))z2-3z3)\rparen


Step 2

Way to find the adjoint of F

((I) Find matrix of f with respect to basis {\lbracee1,e2, e3}\rbrace

where e1=((1,0,0)) , e2=((0,1,0)) , e3=((0,0,1))

Let A be the matrix corresponding to F.


 ((II) Compute (( AT\overline{ A^T}))


 ((II) Hence adjoint F*: 43\rarr43 is

 F* (\lparenz1,z2,z3)\rparen= (( AT\overline{ A^T})) [z1z2z3]\begin{bmatrix} z1\\ z2\\ z3\\ \end{bmatrix}

Now

F((e1)) = F((1,0,0)) = (( 2,(\lparen3+2i)\rparen, 2i))

F((e2)) = F((0,1,0)) = (( 1-i, 0, 4-3i))

F((e3)) = F((0,0,1)) = (( 0,-4i, -3))


Step 3

Hence


A= [21i03+2i04i2i43i3]\begin{bmatrix} 2 & 1-i & 0 \\ 3+2i & 0 & -4i\\ 2i & 4-3i & -3 \\ \end{bmatrix}


AT= [23+2i2i1i043i04i3]\begin{bmatrix} 2 & 3+2i & 2i \\ 1-i & 0 & 4-3i \\ 0 & -4i & -3 \\ \end{bmatrix}


 AT\overline{ A^T} =[232i2i1+i04+3i04i3]\begin{bmatrix} 2 & 3-2i & -2i \\ 1+i & 0 & 4+3i \\ 0 & 4i & -3 \\ \end{bmatrix}


Hence  F*: 43\rarr43 is

 F* (\lparenz1,z2,z3)\rparen= (( AT\overline{ A^T})) [z1z2z3]\begin{bmatrix} z1\\ z2\\ z3\\ \end{bmatrix}

=[232i2i1+i04+3i04i3]\begin{bmatrix} 2 & 3-2i & -2i \\ 1+i & 0 & 4+3i \\ 0 & 4i & -3 \\ \end{bmatrix}[z1z2z3]\begin{bmatrix} z1\\ z2\\ z3\\ \end{bmatrix}


=(\lparen2 z1+(\lparen3+2i)\rparenz2- 2iz3, (\lparen1+i)\rparenz1+4+3iz3, iz2-3z3)\rparen

Therefore,

F (\lparenz1,z2,z3)\rparen=(\lparen2 z1+(\lparen3+2i)\rparenz2- 2iz3, (\lparen1+i)\rparenz1+4+3iz3, iz2-3z3)\rparen


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment