Question #154536

Let f be the bilinear form on R2 defined by

f[(x1, x2), (y1, y2)]= 3x1y1-2x1y2+4x2y1-x2y2

then find the matrix A of f in the basis {u1(1, 1)=u2(1, 2)}


1
Expert's answer
2021-01-10T16:33:49-0500

f:R2R2Rf: \Reals^2*\Reals^2\to\Realsis given byf((x1x2),(y1y2))=3x1y12x1y2+4x2y1x2y2f( (\begin{matrix} x_1 \\ x_2 \end{matrix}), (\begin{matrix} y_1 \\ y_2 \end{matrix}))=3x_1y_1-2x_1y_2+4x_2y_1-x_2y_2

Let us write the matrix of f in the standard basis.

f(e1,e1)=3, f(e1,e2)=2, f(e2,e1)=4, f(e2,e2)=1f(e_1,e_1)=3,\space f(e_1,e_2)=-2, \space f(e_2,e_1)=4, \space f(e_2,e_2)=-1

hence the matrix in the standard basis is

A=(3241)A=( \begin{matrix} 3 & -2 \\ 4 & -1 \end{matrix})

Now for B={b1,...,bn}B = \lbrace b_1, . . . , b_n \rbrace and U={u1,...,un}U = \lbrace u_1, . . . , u_n\rbrace are two bases for VV . We may write one basis in terms of the other: ui=j=1nλj,ibj.u_i= \sum_{j=1}^{n}\lambda_{j,i}b_j. Where coefficients λj,i\lambda_{j,i} form the transition matrix MM from BB to CC. To found matrix AA in new basis [A]u\lbrack A\rbrack_u used change of basis formula : [A]u=MT[A]bM\lbrack A\rbrack_u=M^T \lbrack A\rbrack_b M

In this case we want to write this matrix i basis

(11)\lparen \begin{matrix} 1\\ 1 \end{matrix}) ,(12)(\begin{matrix} 1\\ 2 \end{matrix})

The transition matrix is :

M=(1112)M=( \begin{matrix} 1 & 1 \\ 1 & 2 \end{matrix})

it’s transpose is the same. The matrix of f in the new basis is

[A]u=(1112)(3241)(1112)=(4173)\lbrack A\rbrack_u=( \begin{matrix} 1 & 1 \\ 1 & 2 \end{matrix}) ( \begin{matrix} 3 & -2 \\ 4 & -1 \end{matrix}) ( \begin{matrix} 1 & 1 \\ 1 & 2 \end{matrix})= ( \begin{matrix} 4 & 1 \\ 7 & 3 \end{matrix})





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS