Let f be the bilinear form on R2 defined by
f[(x1, x2), (y1, y2)]= 3x1y1-2x1y2+4x2y1-x2y2
then find the matrix A of f in the basis {u1(1, 1)=u2(1, 2)}
"f: \\Reals^2*\\Reals^2\\to\\Reals"is given by"f(\t(\\begin{matrix}\n x_1 \\\\\n x_2\n\\end{matrix}),\n(\\begin{matrix}\n y_1 \\\\\n y_2\n\\end{matrix}))=3x_1y_1-2x_1y_2+4x_2y_1-x_2y_2"
Let us write the matrix of f in the standard basis.
"f(e_1,e_1)=3,\\space f(e_1,e_2)=-2, \\space f(e_2,e_1)=4, \\space f(e_2,e_2)=-1"
hence the matrix in the standard basis is
"A=( \t\\begin{matrix}\n 3 & -2 \\\\\n 4 & -1\n\\end{matrix})"
Now for "B = \\lbrace b_1, . . . , b_n \\rbrace" and "U = \\lbrace u_1, . . . , u_n\\rbrace" are two bases for "V" . We may write one basis in terms of the other: "u_i= \\sum_{j=1}^{n}\\lambda_{j,i}b_j." Where coefficients "\\lambda_{j,i}" form the transition matrix "M" from "B" to "C". To found matrix "A" in new basis "\\lbrack A\\rbrack_u" used change of basis formula : "\\lbrack A\\rbrack_u=M^T \\lbrack A\\rbrack_b M"
In this case we want to write this matrix i basis
"\\lparen \\begin{matrix}\n 1\\\\\n 1\n\\end{matrix})" ,"(\\begin{matrix}\n 1\\\\\n 2\n\\end{matrix})"
The transition matrix is :
"M=( \\begin{matrix}\n 1 & 1 \\\\\n 1 & 2\n\\end{matrix})"
it’s transpose is the same. The matrix of f in the new basis is
"\\lbrack A\\rbrack_u=( \\begin{matrix}\n 1 & 1 \\\\\n 1 & 2\n\\end{matrix}) ( \t\\begin{matrix}\n 3 & -2 \\\\\n 4 & -1\n\\end{matrix}) ( \\begin{matrix}\n 1 & 1 \\\\\n 1 & 2\n\\end{matrix})= ( \\begin{matrix}\n 4 & 1 \\\\\n 7 & 3\n\\end{matrix})"
Comments
Leave a comment