Express A^5-A^4+A^2-4I as linear polynomial in A where A=metrix 3 1
-2 2
Given matrix is "A=\\left [ \\begin{matrix}\n 3 & 1 \\\\\n -2 & 2\n \\end{matrix}\n\\ \\right ]"
Find the characteristic polynomial equation for the given matrix "A".
A characteristic polynomial equation is given by
"\\left | A-\\lambda I \\right |=0", where "\\lambda" is any scalar.
Using the given matrix, the characteristic equation is
"\\left | \n \\begin{matrix}\n 3-\\lambda & 1 \\\\\n -2 & 2-\\lambda \n \\end{matrix}\n\\ \\right |=0"
"\\Rightarrow (3-\\lambda )(2-\\lambda )+2=0"
"\\Rightarrow 6-3\\lambda -2\\lambda +\\lambda ^2+2=0"
"\\Rightarrow \\lambda ^2-5\\lambda +8=0"
Caley Hamilitons theorem states that every square matrix satisfies its characteristic equation.
That is, we get "\\Rightarrow A ^2-5A +8I=0" ... (1)
Now let us take the given expression "A^5-A^4+A^2-4I" and express it as linear polynomial using the equation (1)
Now "A^5-A^4+A^2-4I=A^3(A^2-5A+8I)+4A^4-8A^3+A^2"
"=A^3(0)+4A^4-8A^3+A^2" ( using (1) )
"=4A^4-8A^3+A^2"
"=4A^2(A^2-5A+8I)+12A^3-31A^2"
"=4A^2(0)+12A^3-31A^2"
"=12A^3-31A^2"
"=12A(A^2-5A+8I)+29A^2"
"=12A(0)+29A^2"
"=29A^2"
"=29(A^2-5A+8I)+145A-232I"
"=29(0)+145A-232I"
"=145A-232I"
Therefore, "A^5-A^4+A^2-4I=145A-232I"
Comments
Leave a comment