Question #155055

let V be a vector space of 3x3 symmetric matric.show that if A,B in V, then <A,B>=tr(AB) in inner product space


1
Expert's answer
2021-01-13T18:20:36-0500

Let


A=[a11a12a13a21a22a23a31a32a33]A=\begin{bmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} &a_{32} & a_{33} \end{bmatrix} and B=[b11b12b13b21b22b23b31b32b33]B=\begin{bmatrix} b_{11} & b_{12} & b_{13}\\ b_{21} & b_{22} & b_{23}\\ b_{31} &b_{32} & b_{33} \end{bmatrix}


AB=[a11a12a13a21a22a23a31a32a33][b11b12b13b21b22b23b31b32b33]\Rightarrow AB=\begin{bmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} &a_{32} & a_{33} \end{bmatrix}\begin{bmatrix} b_{11} & b_{12} & b_{13}\\ b_{21} & b_{22} & b_{23}\\ b_{31} &b_{32} & b_{33} \end{bmatrix}


(AB)=[a11b11+a21b12+a31b13a11b12+a12b22+a13b32a11b13+a12b23+a13b33a21b11+a22b21+a23b31a21b12+a22b22+a23b32a21b13+a22b23+a23b33a31b11+a32b21+a33b31a31b12+a32b22+a33b32a31b13+a32b23+a33b33](AB) =\begin{bmatrix} a_{11}b_{11} +a_{21}b_{12} +a_{31}b_{13} & a_{11}b_{12} + a_{12}b_{22}+a_{13}b_{32}& a_{11}b_{13} + a_{12}b_{23}+a_{13}b_{33}\\ a_{21}b_{11} + a_{22}b_{21}+a_{23}b_{31}& a_{21}b_{12} + a_{22}b_{22}+a_{23}b_{32} & a_{21}b_{13} + a_{22}b_{23}+a_{23}b_{33}\\ a_{31} b_{11} + a_{32}b_{21}+ a_{33}b_{31}&a_{31} b_{12} + a_{32}b_{22}+ a_{33}b_{32}&a_{31} b_{13} + a_{32}b_{23}+ a_{33}b_{33} \end{bmatrix}


(AB)T=[a11b11+a21b12+a31b13a21b11+a22b21+a23b31a31b11+a32b21+a33b31a11b12+a12b22+a13b32a21b12+a22b22+a23b32a31b12+a32b22+a33b32a11b13+a12b23+a13b33a21b13+a22b23+a23b33a31b13+a32b23+a33b33](AB)^T =\begin{bmatrix} a_{11}b_{11} +a_{21}b_{12} +a_{31}b_{13} & a_{21}b_{11} + a_{22}b_{21}+a_{23}b_{31}& a_{31} b_{11} + a_{32}b_{21}+ a_{33}b_{31}\\ a_{11}b_{12} + a_{12}b_{22}+a_{13}b_{32}& a_{21}b_{12} + a_{22}b_{22}+a_{23}b_{32} &a_{31} b_{12} + a_{32}b_{22}+ a_{33}b_{32} \\ a_{11}b_{13} + a_{12}b_{23}+a_{13}b_{33}&a_{21}b_{13} + a_{22}b_{23}+a_{23}b_{33}&a_{31} b_{13} + a_{32}b_{23}+ a_{33}b_{33} \end{bmatrix}


<A,B>=a11b11+a21b12+a31b13+a21b11+a22b21+a23b31+a31b11+a32b21+a33b31a11b12+a12b22+a13b32+a21b12+a22b22+a23b32+a31b12+a32b22+a33b32a11b13+a12b23+a13b33+a21b13+a22b23+a23b33+a31b13+a32b23+a33b33<A ,B>=a_{11}b_{11} +a_{21}b_{12} +a_{31}b_{13} + a_{21}b_{11} + a_{22}b_{21}+a_{23}b_{31}+ a_{31} b_{11} + a_{32}b_{21}+ a_{33}b_{31} a_{11}b_{12} + a_{12}b_{22}+a_{13}b_{32}+ a_{21}b_{12} + a_{22}b_{22}+a_{23}b_{32} +a_{31} b_{12} + a_{32}b_{22}+ a_{33}b_{32} a_{11}b_{13} + a_{12}b_{23}+a_{13}b_{33}+a_{21}b_{13} + a_{22}b_{23}+a_{23}b_{33}+a_{31} b_{13} + a_{32}b_{23}+ a_{33}b_{33}


=Σi=1i=3Σj=1j=3aijbij=\Sigma_{i=1}^{i=3}\Sigma_{j=1}^{j=3}a_{ij}b_{ij}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
12.01.21, 11:16

Dear nur, please use the panel for submitting new questions.

nur
12.01.21, 07:08

list all possible Jordan Canonical Form of A if the characteristic polynomial is given by (2-x)^4 (4-x)^2

LATEST TUTORIALS
APPROVED BY CLIENTS