Let
A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] A=\begin{bmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} &a_{32} & a_{33}
\end{bmatrix} A = ⎣ ⎡ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ⎦ ⎤ and B = [ b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 ] B=\begin{bmatrix}
b_{11} & b_{12} & b_{13}\\
b_{21} & b_{22} & b_{23}\\
b_{31} &b_{32} & b_{33}
\end{bmatrix} B = ⎣ ⎡ b 11 b 21 b 31 b 12 b 22 b 32 b 13 b 23 b 33 ⎦ ⎤
⇒ A B = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] [ b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 ] \Rightarrow AB=\begin{bmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} &a_{32} & a_{33}
\end{bmatrix}\begin{bmatrix}
b_{11} & b_{12} & b_{13}\\
b_{21} & b_{22} & b_{23}\\
b_{31} &b_{32} & b_{33}
\end{bmatrix} ⇒ A B = ⎣ ⎡ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ⎦ ⎤ ⎣ ⎡ b 11 b 21 b 31 b 12 b 22 b 32 b 13 b 23 b 33 ⎦ ⎤
( A B ) = [ a 11 b 11 + a 21 b 12 + a 31 b 13 a 11 b 12 + a 12 b 22 + a 13 b 32 a 11 b 13 + a 12 b 23 + a 13 b 33 a 21 b 11 + a 22 b 21 + a 23 b 31 a 21 b 12 + a 22 b 22 + a 23 b 32 a 21 b 13 + a 22 b 23 + a 23 b 33 a 31 b 11 + a 32 b 21 + a 33 b 31 a 31 b 12 + a 32 b 22 + a 33 b 32 a 31 b 13 + a 32 b 23 + a 33 b 33 ] (AB) =\begin{bmatrix}
a_{11}b_{11} +a_{21}b_{12} +a_{31}b_{13} & a_{11}b_{12} + a_{12}b_{22}+a_{13}b_{32}& a_{11}b_{13} + a_{12}b_{23}+a_{13}b_{33}\\
a_{21}b_{11} + a_{22}b_{21}+a_{23}b_{31}& a_{21}b_{12} + a_{22}b_{22}+a_{23}b_{32} & a_{21}b_{13} + a_{22}b_{23}+a_{23}b_{33}\\
a_{31} b_{11} + a_{32}b_{21}+ a_{33}b_{31}&a_{31} b_{12} + a_{32}b_{22}+ a_{33}b_{32}&a_{31} b_{13} + a_{32}b_{23}+ a_{33}b_{33}
\end{bmatrix} ( A B ) = ⎣ ⎡ a 11 b 11 + a 21 b 12 + a 31 b 13 a 21 b 11 + a 22 b 21 + a 23 b 31 a 31 b 11 + a 32 b 21 + a 33 b 31 a 11 b 12 + a 12 b 22 + a 13 b 32 a 21 b 12 + a 22 b 22 + a 23 b 32 a 31 b 12 + a 32 b 22 + a 33 b 32 a 11 b 13 + a 12 b 23 + a 13 b 33 a 21 b 13 + a 22 b 23 + a 23 b 33 a 31 b 13 + a 32 b 23 + a 33 b 33 ⎦ ⎤
( A B ) T = [ a 11 b 11 + a 21 b 12 + a 31 b 13 a 21 b 11 + a 22 b 21 + a 23 b 31 a 31 b 11 + a 32 b 21 + a 33 b 31 a 11 b 12 + a 12 b 22 + a 13 b 32 a 21 b 12 + a 22 b 22 + a 23 b 32 a 31 b 12 + a 32 b 22 + a 33 b 32 a 11 b 13 + a 12 b 23 + a 13 b 33 a 21 b 13 + a 22 b 23 + a 23 b 33 a 31 b 13 + a 32 b 23 + a 33 b 33 ] (AB)^T =\begin{bmatrix}
a_{11}b_{11} +a_{21}b_{12} +a_{31}b_{13} & a_{21}b_{11} + a_{22}b_{21}+a_{23}b_{31}& a_{31} b_{11} + a_{32}b_{21}+ a_{33}b_{31}\\
a_{11}b_{12} + a_{12}b_{22}+a_{13}b_{32}& a_{21}b_{12} + a_{22}b_{22}+a_{23}b_{32} &a_{31} b_{12} + a_{32}b_{22}+ a_{33}b_{32} \\
a_{11}b_{13} + a_{12}b_{23}+a_{13}b_{33}&a_{21}b_{13} + a_{22}b_{23}+a_{23}b_{33}&a_{31} b_{13} + a_{32}b_{23}+ a_{33}b_{33}
\end{bmatrix} ( A B ) T = ⎣ ⎡ a 11 b 11 + a 21 b 12 + a 31 b 13 a 11 b 12 + a 12 b 22 + a 13 b 32 a 11 b 13 + a 12 b 23 + a 13 b 33 a 21 b 11 + a 22 b 21 + a 23 b 31 a 21 b 12 + a 22 b 22 + a 23 b 32 a 21 b 13 + a 22 b 23 + a 23 b 33 a 31 b 11 + a 32 b 21 + a 33 b 31 a 31 b 12 + a 32 b 22 + a 33 b 32 a 31 b 13 + a 32 b 23 + a 33 b 33 ⎦ ⎤
< A , B > = a 11 b 11 + a 21 b 12 + a 31 b 13 + a 21 b 11 + a 22 b 21 + a 23 b 31 + a 31 b 11 + a 32 b 21 + a 33 b 31 a 11 b 12 + a 12 b 22 + a 13 b 32 + a 21 b 12 + a 22 b 22 + a 23 b 32 + a 31 b 12 + a 32 b 22 + a 33 b 32 a 11 b 13 + a 12 b 23 + a 13 b 33 + a 21 b 13 + a 22 b 23 + a 23 b 33 + a 31 b 13 + a 32 b 23 + a 33 b 33 <A ,B>=a_{11}b_{11} +a_{21}b_{12} +a_{31}b_{13} + a_{21}b_{11} + a_{22}b_{21}+a_{23}b_{31}+ a_{31} b_{11} + a_{32}b_{21}+ a_{33}b_{31}
a_{11}b_{12} + a_{12}b_{22}+a_{13}b_{32}+ a_{21}b_{12} + a_{22}b_{22}+a_{23}b_{32} +a_{31} b_{12} + a_{32}b_{22}+ a_{33}b_{32}
a_{11}b_{13} + a_{12}b_{23}+a_{13}b_{33}+a_{21}b_{13} + a_{22}b_{23}+a_{23}b_{33}+a_{31} b_{13} + a_{32}b_{23}+ a_{33}b_{33} < A , B >= a 11 b 11 + a 21 b 12 + a 31 b 13 + a 21 b 11 + a 22 b 21 + a 23 b 31 + a 31 b 11 + a 32 b 21 + a 33 b 31 a 11 b 12 + a 12 b 22 + a 13 b 32 + a 21 b 12 + a 22 b 22 + a 23 b 32 + a 31 b 12 + a 32 b 22 + a 33 b 32 a 11 b 13 + a 12 b 23 + a 13 b 33 + a 21 b 13 + a 22 b 23 + a 23 b 33 + a 31 b 13 + a 32 b 23 + a 33 b 33
= Σ i = 1 i = 3 Σ j = 1 j = 3 a i j b i j =\Sigma_{i=1}^{i=3}\Sigma_{j=1}^{j=3}a_{ij}b_{ij} = Σ i = 1 i = 3 Σ j = 1 j = 3 a ij b ij
Comments
Dear nur, please use the panel for submitting new questions.
list all possible Jordan Canonical Form of A if the characteristic polynomial is given by (2-x)^4 (4-x)^2