Let B =(a1, a2, a3) be an ordered basis of
R3 with a1 = (1, 0, -1), a2 = (1, 1, 1),
a3 = (1, 0, 0). Write the vector v = (p,q,r)) as
a linear combination of the basis vectors
from B
"\\text{Let } v=c_1a_1+c_2a_2+c_3a_3\\\\\n\\Rightarrow \\begin{bmatrix}p\\\\q\\\\r\\end{bmatrix}^T=c_1\\times\\begin{bmatrix}1\\\\0\\\\-1\\end{bmatrix}^T+c_2\\times\\begin{bmatrix}1\\\\1\\\\1\\end{bmatrix}^T+c_3\\times\\begin{bmatrix}1\\\\0\\\\0\\end{bmatrix}^T\\\\\\;\\\\\n\\Rightarrow \\begin{bmatrix}p\\\\q\\\\r\\end{bmatrix}^T=\\begin{bmatrix}c_1\\\\c_2\\\\c_3\\end{bmatrix}^T\\times\\begin{bmatrix}1&1&1\\\\0&1&0\\\\-1&1&0\\end{bmatrix}^T\\\\\\;\\\\\n\\Rightarrow\n\\begin{bmatrix}p\\\\q\\\\r\\end{bmatrix}=\\begin{bmatrix}1&1&1\\\\0&1&0\\\\-1&1&0\\end{bmatrix}\\times \\begin{bmatrix}c_1\\\\c_2\\\\c_3\\end{bmatrix}\\\\\\;\\\\\n\\text{By Row-reducing we get,}\\\\\n\\Rightarrow \n\\begin{bmatrix}q-r\\\\q\\\\p+r-2q\\end{bmatrix}=\\begin{bmatrix}1&0&0\\\\0&1&0\\\\0&0&1\\end{bmatrix}\\times \\begin{bmatrix}c_1\\\\c_2\\\\c_3\\end{bmatrix}\\\\\\;\\\\\n\\Rightarrow c_1=q-r, \\;c_2=q,\\;c_3=p+r-2q"
"\\text{So, v = (p,q,r) as \n\na linear combination of the basis vectors \n\nfrom B :-}\\\\"
Comments
Leave a comment