Question #156298
Let A = {(x, y, z) E R^3ㅣx - y + z = 0} where E represents "an element of" and R the set of real numbers
A mapping f is defined in R^(2*2) , the set of all square matrices of order 2 with entries in R by f: R^(2*2) → R^2
A → Av where v = (-1 2).
(a) Determine ker F. Give a basis of it and precise its dimension.
(b)Verify that the matrix B = (2 1
4 2)
belongs to ker F, and determine its coordinate vector with respect to the basis you gave in (a) above
1
Expert's answer
2021-02-11T11:43:53-0500

(a) Let us find determine kerF\ker F and give a basis of it and precise its dimension.


kerF={(abcd)R22  (abcd)(12)=(00)}={(abcd)R22  (a+2bc+2d)=(00)}={(abcd)R22  a=2b,c=2d}={(2bb2dd)  b,dR}\ker F=\big\{\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)\in\mathbb R^{2*2}\ |\ \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)\left(\begin{array}{cc} -1 \\ 2 \end{array}\right)= \left(\begin{array}{cc} 0 \\ 0 \end{array}\right)\big\} =\big\{\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)\in\mathbb R^{2*2}\ |\ \left(\begin{array}{cc} -a+2b \\ -c+2d \end{array}\right)= \left(\begin{array}{cc} 0 \\ 0 \end{array}\right)\big\}= \big\{\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)\in\mathbb R^{2*2}\ |\ a=2b, c=2d\big\} =\big\{\left(\begin{array}{cc} 2b & b \\ 2d & d \end{array}\right)\ |\ b,d\in\mathbb R\big\}


It follows that kerF={(2bb2dd)  b,dR}={b(2100)+d(0021)  b,dR}\ker F=\big\{\left(\begin{array}{cc} 2b & b \\ 2d & d \end{array}\right)\ |\ b,d\in\mathbb R\big\}=\big\{b\left(\begin{array}{cc} 2 & 1 \\ 0 & 0 \end{array}\right)+d\left(\begin{array}{cc} 0 & 0 \\ 2 & 1 \end{array}\right)\ |\ b,d\in\mathbb R\big\}, and therefore the linear independent matrices (2100),(0021)\left(\begin{array}{cc} 2 & 1 \\ 0 & 0 \end{array}\right),\left(\begin{array}{cc} 0 & 0 \\ 2 & 1 \end{array}\right) form a basis of kerF.\ker F. Thus dim(kerF)=2.\dim(\ker F)=2.



(b) Since for the matrix B=(2142)B =\left(\begin{array}{cc} 2 & 1 \\ 4 & 2 \end{array}\right) we have that (2142)(12)=(00)\left(\begin{array}{cc} 2 & 1 \\ 4 & 2 \end{array}\right)\left(\begin{array}{cc} -1 \\ 2 \end{array}\right)=\left(\begin{array}{cc} 0 \\ 0 \end{array}\right), BB belongs to kerF\ker F. Taking into account that B=(2142)=1(2100)+2(0021)B=\left(\begin{array}{cc} 2 & 1 \\ 4 & 2 \end{array}\right)=1\cdot\left(\begin{array}{cc} 2 & 1 \\ 0 & 0 \end{array}\right)+2\cdot \left(\begin{array}{cc} 0 & 0 \\ 2 & 1 \end{array}\right), we conclude that its coordinate vector with respect to the above basis is (1,2).(1,2).




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS