(a) Let us find determine "\\ker F" and give a basis of it and precise its dimension.
"\\ker F=\\big\\{\\left(\\begin{array}{cc} a & b \\\\ c & d \\end{array}\\right)\\in\\mathbb R^{2*2}\\ |\\ \n\\left(\\begin{array}{cc} a & b \\\\ c & d \\end{array}\\right)\\left(\\begin{array}{cc} -1 \\\\ 2 \\end{array}\\right)=\n\\left(\\begin{array}{cc} 0 \\\\ 0 \\end{array}\\right)\\big\\}\n=\\big\\{\\left(\\begin{array}{cc} a & b \\\\ c & d \\end{array}\\right)\\in\\mathbb R^{2*2}\\ |\\ \n\\left(\\begin{array}{cc} -a+2b\n \\\\ -c+2d \\end{array}\\right)=\n\\left(\\begin{array}{cc} 0 \\\\ 0 \\end{array}\\right)\\big\\}=\n\\big\\{\\left(\\begin{array}{cc} a & b \\\\ c & d \\end{array}\\right)\\in\\mathbb R^{2*2}\\ |\\ \na=2b, c=2d\\big\\}\n=\\big\\{\\left(\\begin{array}{cc} 2b & b \\\\ 2d & d \\end{array}\\right)\\ |\\ \nb,d\\in\\mathbb R\\big\\}"
It follows that "\\ker F=\\big\\{\\left(\\begin{array}{cc} 2b & b \\\\ 2d & d \\end{array}\\right)\\ |\\ \nb,d\\in\\mathbb R\\big\\}=\\big\\{b\\left(\\begin{array}{cc} 2 & 1 \\\\ 0 & 0 \\end{array}\\right)+d\\left(\\begin{array}{cc} 0 & 0 \\\\ 2 & 1 \\end{array}\\right)\\ |\\ \nb,d\\in\\mathbb R\\big\\}", and therefore the linear independent matrices "\\left(\\begin{array}{cc} 2 & 1 \\\\ 0 & 0 \\end{array}\\right),\\left(\\begin{array}{cc} 0 & 0 \\\\ 2 & 1 \\end{array}\\right)" form a basis of "\\ker F." Thus "\\dim(\\ker F)=2."
(b) Since for the matrix "B =\\left(\\begin{array}{cc} 2 & 1 \\\\ 4 & 2 \\end{array}\\right)" we have that "\\left(\\begin{array}{cc} 2 & 1 \\\\ 4 & 2 \\end{array}\\right)\\left(\\begin{array}{cc} -1 \\\\ 2 \\end{array}\\right)=\\left(\\begin{array}{cc} 0 \\\\ 0 \\end{array}\\right)", "B" belongs to "\\ker F". Taking into account that "B=\\left(\\begin{array}{cc} 2 & 1 \\\\ 4 & 2 \\end{array}\\right)=1\\cdot\\left(\\begin{array}{cc} 2 & 1 \\\\ 0 & 0 \\end{array}\\right)+2\\cdot \\left(\\begin{array}{cc} 0 & 0 \\\\ 2 & 1 \\end{array}\\right)", we conclude that its coordinate vector with respect to the above basis is "(1,2)."
Comments
Leave a comment